SHAP: 在我眼里,没有黑箱_python对shap的计算只能针对大数值吗-程序员宅基地

技术标签: 零基础入门数据挖掘  SHAP  竞赛学习笔记  特征选择  Feature import  

1. 写在前面

很多高级的机器学习模型(xgboost, lgb, cat)和神经网络模型, 它们相对于普通线性模型在进行预测时往往有更好的精度,但是同时也失去了线性模型的可解释性, 所以这些模型也往往看作是黑箱模型, 在2017年,Lundberg和Lee的论文提出了SHAP值这一广泛适用的方法用来解释各种模型(分类以及回归), 使得前面的黑箱模型变得可解释了,这篇文章主要整理一下SHAP的使用, 这个在特征选择的时候特别好用。

这次整理, 主要是在xgboost和lgb等树模型上的使用方式, 并且用一个真实的数据集进行演示, 详细的内容参考SHAP的原地址:https://github.com/slundberg/shap

2. 简单回忆特征选择

一般在机器学习中, 我们想看哪些特征对目标变量有重要作用的时候, 常用的有下面几种方式:

  1. 求相关性
    这个往往可以判别出某些特征和目标变量之间是否有线性相关关系, 从而去看某些特征的重要性程度, 一般我们喜欢保留线性相关关系大的一些特征。

  2. 包裹式
    这个说白了, 就是直接把数据放到像xgboost和lgb这种模型中训练, 训练完了之后, 再用feature importance可视化每个特征的重要性, 从而看哪些特征对最终的模型影响较大, But, 这种方式无法判断特征与最终预测结果的关系是如何的, 即不知道怎么影响的,待会给出真实例子来演示。

  3. permutation importance
    这是在kaggle比赛中学习到的一种特征筛选的方式, 所以也借机整理一下, 这个方式还是很不错的, 这个思路就是用所有的特征训练模型, 然后再在验证集上得到验证误差, 然后遍历每一个特征, 随机打乱这个特征的值, 再计算验证误差, 用后面的验证误差和前面的验证误差进行对比, 就可以看出该特征对于减少误差的贡献程度, 也就能看出特征的重要性。这里整理一下这种方式(思路):

    # 首先我们先建立一个模型, 然后写一个训练模型的函数
    lgb_params = {
          
         'boosting_type': 'gbdt',         # Standart boosting type
        'objective': 'mae',       # Standart loss for RMSE
        'metric': ['mae'],              # as we will use rmse as metric "proxy"
        'subsample': 0.8,                
        'subsample_freq': 1,
        'learning_rate': 0.05,           # 0.5 is "fast enough" for us
        'num_leaves': 2**7-1,            # We will need model only for fast check
        'min_data_in_leaf': 2**8-1,      # So we want it to train faster even with drop in generalization 
        'feature_fraction': 0.8,
        'n_estimators': 5000,            # We don't want to limit training (you can change 5000 to any big enough number)
        'early_stopping_rounds': 30,     # We will stop training almost immediately (if it stops improving) 
        'seed': 2020,
        'verbose': -1,
    }
    
    def make_fast_test(sel_data):
        train_ready = sel_data[sel_data['time'] < pd.to_datetime('2019-12-10')].drop(columns = ['time'])
    
        x_train = train_ready.drop(columns = ['TTI'])
        y_train = train_ready['TTI']
    
        val_ready = sel_data[sel_data['time'] >= pd.to_datetime('2019-12-10')].drop(columns = ['time'])
        x_val = val_ready.drop(columns = ['TTI'])
        y_val = val_ready['TTI']
    
        train_data = lgb.Dataset(x_train, label=y_train)
        val_data = lgb.Dataset(x_val, label=y_val)
        
        estimator = lgb.train(lgb_params, train_data, valid_sets=[train_data, val_data], verbose_eval=500)
        return estimator
    
    # 调用函数建立训练好的模型
    test_model = make_fast_test(sel_data)
    
    # 做一个验证集
    features_columns = sel_data.drop(columns='time').columns.tolist()
    features_columns.remove('TTI')
    
    val_ready = val_ready = sel_data[sel_data['time'] >= pd.to_datetime('2019-12-10')].drop(columns = ['time'])
    x_val = val_ready.drop(columns = ['TTI'])
    y_val = val_ready['TTI']
    
    pre = test_model.predict(x_val)
    base_score = mean_absolute_error(pre, y_val)
    print('startscore: ', base_score)       # 这里会得到模型在验证集上的分数
    
    # 接下来就是尝试筛选特征,对于每个特征, 
    # 把那一列的值进行随机打乱, 然后再用之前的模型进行预测, 得到验证误差
    # 对比这俩误差的不同, 就会发现每个特征对于模型来说,是有利于模型表现好还是表现差
    for col in features_columns:
        temp_df = x_val.copy()
        
        temp_df[col] = np.random.permutation(temp_df[col].values)
        pre = test_model.predict(temp_df)
        cur_score = mean_absolute_error(pre, y_val)
        
        print(col, np.round(cur_score-base_score, 4))
    

    这个方式,其实就能够既判断出特征的重要性, 也能判断出特征是怎么影响模型的。
    而有了SHAP之后, 貌似是这一切变得更加简单。

下面通过一个真实的例子, 来看一下之前的Feature importance和SHAP的具体使用, 这里用的数据集是一个数据竞赛的数据集

3. Feature importance VS SHAP

3.1 Feature importance

在SHAP被广泛使用之前,我们通常用feature importance或者partial dependence plot来解释xgboost等机器学习模型。 feature importance是用来衡量数据集中每个特征的重要性。每个特征对于提升整个模型的预测能力的贡献程度就是特征的重要性。

下面根据这个案例来看看, 先导入包和数据, 然后训练xgb和lgb。

import xgboost as xgb
import lightgbm as lgb
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('seaborn')
# 读取数据
data = pd.read_csv('data/train.csv', index_col=0)
# 获得球员的年龄
today = pd.to_datetime('2018-01-01')
data['birth_date'] = pd.to_datetime(data['birth_date'])
data['age'] = np.round((today-data['birth_date']).apply(lambda x:x.days) / 365., 1)

# 选择部分特征举例
# 特征依次为身高(厘米)、潜力、速度、射门、传球、带球、防守、体格、国际知名度、年龄
cols = ['height_cm', 'potential', 'pac', 'sho', 'pas', 'dri', 'def', 'phy', 
        'international_reputation', 'age']

model1 = xgb.XGBRegressor(max_depth=4, learning_rate=0.05, n_estimators=150)
model2 = lgb.LGBMRegressor()

model1.fit(data[cols], data['y'])
model2.fit(data[cols], data['y'])

下面我们可以画出每个特征的重要性程度:

# 获取feature importance
plt.figure(figsize=(20, 10))
plt.subplot(1, 2, 1)
plt.bar(range(len(cols)), model1.feature_importances_)
plt.xticks(range(len(cols)), cols, rotation=-45, fontsize=14)
plt.title('Xgb Feature importance', fontsize=14)

plt.subplot(1, 2, 2)
plt.bar(range(len(cols)), model2.feature_importances_)
plt.xticks(range(len(cols)), cols, rotation=-45, fontsize=14)
plt.title('Lgb Feature importance', fontsize=14)
plt.show()

结果如下:
在这里插入图片描述
对于xgboost来说,我们可以看出国际知名度、潜力和年龄是影响球员身价最重要的三个因素。而LGB来说, 潜力和年龄很重要, 但是这些因素和身价是正相关、负相关还是其他更复杂的相关性,我们无法从上图得知。我们也无法解读每个特征对每个个体的预测值的影响。

3.2 SHAP value

SHAP的名称来源于SHapley Additive exPlanation。

Shapley value起源于合作博弈论。比如说甲乙丙丁四个工人一起打工,甲和乙完成了价值100元的工件,甲、乙、丙完成了价值120元的工件,乙、丙、丁完成了价值150元的工件,甲、丁完成了价值90元的工件,那么该如何公平、合理地分配这四个人的工钱呢?Shapley提出了一个合理的计算方法(有兴趣地可以查看原论文),我们称每个参与者分配到的数额为Shapley value。

SHAP是由Shapley value启发的可加性解释模型。对于每个预测样本,模型都产生一个预测值,SHAP value就是该样本中每个特征所分配到的数值。假设第 i i i个样本为 x i x_i xi, 第 i i i个样本的第 j j j个特征为 x i j x_{ij} xij, 模型对于第 i i i个样本的预测值为 y i y_i yi, 整个模型的基线(通常是所有样本目标变量的均值)为 y b a s e y_{base} ybase, 那么SHAP value服从以下等式。
y i = y b a s e + f ( x i 1 ) + f ( x i 2 ) + f ( x i 3 ) + . . . . + f ( x i k ) y_i = y_{base}+f(x_{i1})+f(x_{i2})+f(x_{i3})+....+f(x_{ik}) yi=ybase+f(xi1)+f(xi2)+f(xi3)+....+f(xik)
其中, f ( x i k ) f(x_{ik}) f(xik) x i k x_{ik} xik的SHAP值。 直观上看, f ( x i k ) f_(x_{ik}) f(xik)就是第 i i i个样本中第 k k k个特征对最终预测值 y i y_i yi的贡献值, 当 f ( x i k ) > 0 f_(x_{ik})>0 f(xik)>0, 说明该特征提升了预测值, 也是正向的作用, 反之, 说明该特征使得预测值降低, 有反作用。很明显可以看出,与前面的feature importance相比,SHAP value最大的优势是SHAP能对于反映出每一个样本中的特征的影响力,而且还表现出影响的正负性

那么怎么用呢?

3.3 SHAP的python实现

Python中SHAP值的计算由shap这个package实现,可以通过pip install shap安装。

import shap

# 导入package, 就可以用shape获得一个解释器
explainer_xgb = shap.TreeExplainer(model1)
explainer_lgb = shap.TreeExplainer(model2)

# 获取训练集data各个样本各个特征的SHAP值
shape_values = explainer_lgb.shap_values(data[cols])
shape_values.shape    # data中有10441个样本10个特征, 所以这里的SHAP值是每个样本每个特征的shap值

# 获得基线ybase
ybase_xgb = explainer_xgb.expected_value
ybase_lgb = explainer_lgb.expected_value
print(ybase_lgb, ybase_xgb)   # 229.28876544209956 [229.1682549]

## 基线值等于训练集的目标变量的拟合值的均值
pred_xgb = model1.predict(data[cols])
pred_lgb = model2.predict(data[cols])
print(pred_lgb.mean(), pred_xgb.mean())  # 229.28876544209956 229.16826
3.3.1 单个样本的SHAP的值

可以随机检查某一个球员身价的预测值以及各个特征对其预测值的影响。

j = 30
player_explainer = pd.DataFrame()
player_explainer['feature'] = cols
player_explainer['feature_values'] = data[cols].iloc[j].values
player_explainer['shap_value'] = shape_values[j]
player_explainer

结果如下:
在这里插入图片描述

# 一个样本中各个特征SHAP的值的和加上基线值应该等于该样本的预测值
print(ybase_lgb+player_explainer['shap_value'].sum(), pred_lgb[j])

shap还提供了强大的数据可视化功能。

shap.initjs()
shap.force_plot(explainer_lgb.expected_value, shape_values[j], data[cols].iloc[j])

结果如下:
在这里插入图片描述
蓝色表示该特征的贡献是负数, 红色表示该特征的贡献是正数。

3.3.2 对特征的总体分析

除了能对单个样本的SHAP值进行可视化之外,还能对特征进行整体的可视化。

shap.summary_plot(shape_values, data[cols])

结果如下:
在这里插入图片描述

图中每一行代表一个特征,横坐标为SHAP值。一个点代表一个样本,颜色越红说明特征本身数值越大,颜色越蓝说明特征本身数值越小。

我们可以直观地看出潜力potential是一个很重要的特征,而且基本上是与身价成正相关的。年龄age也会明显影响身价,蓝色点主要集中在SHAP小于0的区域,可见年纪小会降低身价估值,另一方面如果年纪很大,也会降低估值,甚至降低得更明显,因为age这一行最左端的点基本上都是红色的。

我们也可以把一个特征对目标变量影响程度的绝对值的均值作为这个特征的重要性。因为SHAP和feature_importance的计算方法不同,所以我们这里也得到了与前面不同的重要性排序。

shap.summary_plot(shape_values, data[cols], plot_type='bar')

结果如下:
在这里插入图片描述

3.3.3 部分依赖图

SHAP也提供了部分依赖图的功能,与传统的部分依赖图不同的是,这里纵坐标不是目标变量y的数值而是SHAP值。

shap.dependence_plot('age', shape_values, data[cols], interaction_index=None, show=False)

结果如下:
在这里插入图片描述

年纪大概呈现出金字塔分布,也就是25到32岁这个年纪对球员的身价是拉抬作用,小于25以及大于32岁的球员身价则会被年纪所累。

3.3.4 对多个变量的交互进行分析

可以多个变量的交互作用进行分析。

shap_interaction_values = shap.TreeExplainer(model1).shap_interaction_values(data[cols])
shap.summary_plot(shap_interaction_values, data[cols], max_display=4)

结果如下:
在这里插入图片描述

3.3.5 两个变量交互下的变量对目标值的影响
shap.dependence_plot('potential', shape_values, data[cols], interaction_index='international_reputation', show=False)

结果如下:
在这里插入图片描述

4. 小总

小总一下, SHAP在特征选择里面挺常用的, 让很多模型变得有了可解释性。当然, 也不仅适用于机器学习模型, 同样也适用于深度学习的一些模型, 这个具体的可以看下面的GitHub链接。

参考

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wuzhongqiang/article/details/107415606

智能推荐

WCE Windows hash抓取工具 教程_wce.exe -s aaa:win-9r7tfgsiqkf:0000000000000000000-程序员宅基地

文章浏览阅读6.9k次。WCE 下载地址:链接:https://share.weiyun.com/5MqXW47 密码:bdpqku工具界面_wce.exe -s aaa:win-9r7tfgsiqkf:00000000000000000000000000000000:a658974b892e

各种“网络地球仪”-程序员宅基地

文章浏览阅读4.5k次。Weather Globe(Mackiev)Google Earth(Google)Virtual Earth(Microsoft)World Wind(NASA)Skyline Globe(Skylinesoft)ArcGISExplorer(ESRI)国内LTEarth(灵图)、GeoGlobe(吉奥)、EV-Globe(国遥新天地) 软件名称: 3D Weather Globe(http:/_网络地球仪

程序员的办公桌上,都出现过哪些神奇的玩意儿 ~_程序员展示刀,产品经理展示枪-程序员宅基地

文章浏览阅读1.9w次,点赞113次,收藏57次。我要买这些东西,然后震惊整个办公室_程序员展示刀,产品经理展示枪

霍尔信号、编码器信号与电机转向-程序员宅基地

文章浏览阅读1.6w次,点赞7次,收藏63次。霍尔信号、编码器信号与电机转向从电机出轴方向看去,电机轴逆时针转动,霍尔信号的序列为编码器信号的序列为将霍尔信号按照H3 H2 H1的顺序组成三位二进制数,则霍尔信号翻译成状态为以120°放置霍尔为例如不给电机加电,使用示波器测量三个霍尔信号和电机三相反电动势,按照上面所说的方向用手转动电机得到下图① H1的上升沿对应电机q轴与H1位置电角度夹角为0°,..._霍尔信号

个人微信淘宝客返利机器人搭建教程_怎么自己制作返利机器人-程序员宅基地

文章浏览阅读7.1k次,点赞5次,收藏36次。个人微信淘宝客返利机器人搭建一篇教程全搞定天猫淘宝有优惠券和返利,仅天猫淘宝每年返利几十亿,你知道么?技巧分享:在天猫淘宝京东拼多多上挑选好产品后,按住标题文字后“复制链接”,把复制的淘口令或链接发给机器人,复制机器人返回优惠券口令或链接,再打开天猫或淘宝就能领取优惠券啦下面教你如何搭建一个类似阿可查券返利机器人搭建查券返利机器人前提条件1、注册微信公众号(订阅号、服务号皆可)2、开通阿里妈妈、京东联盟、拼多多联盟一、注册微信公众号https://mp.weixin.qq.com/cgi-b_怎么自己制作返利机器人

【团队技术知识分享 一】技术分享规范指南-程序员宅基地

文章浏览阅读2.1k次,点赞2次,收藏5次。技术分享时应秉持的基本原则:应有团队和个人、奉献者(统筹人)的概念,同时匹配团队激励、个人激励和最佳奉献者激励;团队应该打开工作内容边界,成员应该来自各内容方向;评分标准不应该过于模糊,否则没有意义,应由客观的基础分值以及分团队的主观综合结论得出。应有心愿单激励机制,促进大家共同聚焦到感兴趣的事情上;选题应有规范和框架,具体到某个小类,这样收获才有目标性,发布分享主题时大家才能快速判断是否是自己感兴趣的;流程和分享的模版应该有固定范式,避免随意的格式导致随意的内容,评分也应该部分参考于此;参会原则,应有_技术分享

随便推点

O2OA开源企业办公开发平台:使用Vue-CLI开发O2应用_vue2 oa-程序员宅基地

文章浏览阅读1k次。在模板中,我们使用了标签,将由o2-view组件负责渲染,给o2-view传入了两个参数:app="内容管理数据"和name="所有信息",我们将在o2-view组件中使用这两个参数,用于展现“内容管理数据”这个数据应用下的“所有信息”视图。在o2-view组件中,我们主要做的事是,在vue组件挂载后,将o2的视图组件,再挂载到o2-view组件的根Dom对象。当然,这里我们要在我们的O2服务器上创建好数据应用和视图,对应本例中,就是“内容管理数据”应用下的“所有信息”视图。..._vue2 oa

[Lua]table使用随笔-程序员宅基地

文章浏览阅读222次。table是lua中非常重要的一种类型,有必要对其多了解一些。

JAVA反射机制原理及应用和类加载详解-程序员宅基地

文章浏览阅读549次,点赞30次,收藏9次。我们前面学习都有一个概念,被private封装的资源只能类内部访问,外部是不行的,但这个规定被反射赤裸裸的打破了。反射就像一面镜子,它可以清楚看到类的完整结构信息,可以在运行时动态获取类的信息,创建对象以及调用对象的属性和方法。

Linux-LVM与磁盘配额-程序员宅基地

文章浏览阅读1.1k次,点赞35次,收藏12次。Logical Volume Manager,逻辑卷管理能够在保持现有数据不变的情况下动态调整磁盘容量,从而提高磁盘管理的灵活性/boot分区用于存放引导文件,不能基于LVM创建PV(物理卷):基于硬盘或分区设备创建而来,生成N多个PE,PE默认大小4M物理卷是LVM机制的基本存储设备,通常对应为一个普通分区或整个硬盘。创建物理卷时,会在分区或硬盘的头部创建一个保留区块,用于记录 LVM 的属性,并把存储空间分割成默认大小为 4MB 的基本单元(PE),从而构成物理卷。

车充产品UL2089安规测试项目介绍-程序员宅基地

文章浏览阅读379次,点赞7次,收藏10次。4、Dielecteic voltage-withstand test 介电耐压试验。1、Maximum output voltage test 输出电压试验。6、Resistance to crushing test 抗压碎试验。8、Push-back relief test 阻力缓解试验。7、Strain relief test 应变消除试验。2、Power input test 功率输入试验。3、Temperature test 高低温试验。5、Abnormal test 故障试验。

IMX6ULL系统移植篇-系统烧写原理说明_正点原子 imx6ull nand 烧录-程序员宅基地

文章浏览阅读535次。镜像烧写说明_正点原子 imx6ull nand 烧录