数字图像处理(10): OpenCV 图像阈值化处理_binarization threshold-程序员宅基地

技术标签: Python 学习笔记  Python图像处理  数字图像处理  数字图像处理专栏  阈值处理  Python  

目录

1 什么是阈值化- threshold()

2 二进制阈值化

3 反二进制阈值化

4 截断阈值化

5 反阈值化为0

6 阈值化为0

7 小结

参考资料


1 什么是阈值化- threshold()

图像的二值化或阈值化 (Binarization) 旨在提取图像中的目标物体,将背景以及噪声区分开来。通常会设定一个阈值 T,通过阈值 T 将图像的像素划分为两类:大于阈值 {\color{Red} T} 的像素群和小于阈值 {\color{Red} T} 的像素群。

灰度转换处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度。二值化处理可以将图像中的像素划分为两类颜色,常用的二值化算法如下所示:

                                                                            \left\{ {\begin{array}{*{20}{c}} {Y = 0}&, \\ {Y = 255}&, \end{array}\begin{array}{*{20}{c}} {gray < T} \\ {gray > = T} \end{array}} \right.

其中,当灰度Gray小于阈值T时,其像素设置为0,表示黑色;

           当灰度Gray大于或等于阈值T时,其Y值为255,表示白色。

Python OpenCV中提供了阈值函数 threshold() 实现二值化处理,其函数形式及参数如下图所示:

retval, dst = cv2.threshold(src, thresh, maxval, type)

其中,参数:

retval:阈值        

dst: 处理结果

src,:原图像

thresh:阈值

maxval:最大值

type:类

 

常用的方法如下表所示,其中函数中的参数Gray表示灰度图,参数127表示对像素值进行分类的阈值,参数255表示像素值高于阈值时应该被赋予的新像素值,最后一个参数对应不同的阈值处理方法。

 

对应OpenCV提供的五张图如下所示,第一张为原图,后面依次为:

二进制阈值化反二进制阈值化截断阈值化反阈值化为0 和 阈值化为0

 

二值化处理广泛应用于各行各业,比如生物学中的细胞图分割、交通领域的车牌设别等。在文化应用领域中,通过二值化处理将所需民族文物图像转换为黑白两色图,从而为后面的图像识别提供更好的支撑作用。下图表示图像经过各种二值化处理算法后的结果,其中“BINARY”是最常见的黑白两色处理。下面将依次对5种阈值化处理方法进行介绍以及实验对比。


 

2 二进制阈值化

二进制阈值化方法先要选定一个特定的阈值量,比如127。新的阈值产生规则如下:

                                                             dst(x,y) = \left\{ {\begin{array}{*{20}{c}} {\max Val}&,\\ 0&, \end{array}\begin{array}{*{20}{c}} {if{\rm{ }}src(x,y) > thresh}\\ {otherwise} \end{array}} \right.

(1) 大于等于127的像素点的灰度值设定为最大值(如8位灰度值最大为255);

(2) 灰度值小于127的像素点的灰度值设定为0 ;

例如,163->255,86->0,102->0,201->255

使用关键字为:cv2.THRESH_BINARY

例如:r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY)

 

代码如下:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#二进制阈值化处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY)
print (r)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:(R, B两个通道均使用了阈值处理


 

3 反二进制阈值化

反二进制阈值化方法与二进制阈值化方法相似,先要选定一个特定的灰度值作为阈值,比如127。新的阈值产生规则如下公式所示:

                                                           dst(x,y) = \left\{ {\begin{array}{*{20}{c}} 0&,\\ {\max Val}&, \end{array}\begin{array}{*{20}{c}} {if{\rm{ }}src(x,y) > thresh}\\ {otherwise} \end{array}} \right.

(1) 大于127的像素点的灰度值设定为0(以8位灰度图为例);

(2) 小于该阈值的灰度值设定为255;

例如,163->0,86->255,102->255,201->0。

使用关键字为: cv2.THRESH_BINARY_INV

例如:r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY_INV)

 

代码如下:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#反二进制阈值化处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_BINARY_INV)
print (r)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:


 

4 截断阈值化

截断阈值化方法需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变,比如127。新的阈值产生规则如下:

                                                          dst(x,y) = \left\{ {\begin{array}{*{20}{c}} {threshold}&,\\ {src(x,y)}&, \end{array}\begin{array}{*{20}{c}} {if{\rm{ }}src(x,y) > thresh}\\ {otherwise} \end{array}} \right.

(1) 大于等于127的像素点的灰度值设定为该阈值127;

(2) 小于该阈值的灰度值不改变;

例如,163->127,86->86,102->102,201->127。

使用关键字为: cv2.THRESH_TRUNC

例如:r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TRUNC)

 

代码如下:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#截断阈值化处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TRUNC)
print (r)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:[ 该处理方法相当于把图像中比较亮(大于127,偏向于白色)的像素值处理为阈值。]


 

5 反阈值化为0

反阈值化为0 方法先选定一个阈值,比如127,接着对图像的灰度值进行如下处理:

                                                           dst(x,y) = \left\{ {\begin{array}{*{20}{c}} 0&,\\ {src(x,y)}&, \end{array}\begin{array}{*{20}{c}} {if{\rm{ }}src(x,y) > thresh}\\ {otherwise} \end{array}} \right.

(1) 大于等于阈值127的像素点变为0 ;

(2) 小于该阈值的像素点值保持不变;

例如,163->0,86->86,102->102,201->0。

使用关键字为: cv2.THRESH_TOZERO_INV 

例如:r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO_INV)

 

代码如下:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#反阈值化为0处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO_INV)
print (r)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:


 

6 阈值化为0

阈值化为0 方法先选定一个阈值,比如127,接着对图像的灰度值进行如下处理:

                                                         dst(x,y) = \left\{ {\begin{array}{*{20}{c}} {src(x,y)}&,\\ 0&, \end{array}\begin{array}{*{20}{c}} {if{\rm{ }}src(x,y) > thresh}\\ {otherwise} \end{array}} \right.

 

(1) 大于等于阈值127的像素点,值保持不变;

(2) 小于该阈值的像素点值设置为0 ;

例如,163->163,86->0,102->0,201->201。

使用关键字为: cv2.THRESH_TOZERO

例如:r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO)

 

代码如下:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)

#灰度图像处理
GrayImage = cv2.cvtColor(src,cv2.COLOR_BGR2GRAY)

#阈值化为0处理
r, b = cv2.threshold(GrayImage, 127, 255, cv2.THRESH_TOZERO)
print (r)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", b)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:(该方法把比较亮的部分不变,比较暗的部分处理为0。)


 

7 小结

把上面提及的五种阈值处理方法(二进制阈值化反二进制阈值化截断阈值化反阈值化为0 和 阈值化为0)放在一起进行对比

代码如下所示:(注意一个窗口多张图像的用法

#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

#读取图像
img = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

#阈值化处理
ret,thresh1=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY)
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3=cv2.threshold(GrayImage,127,255,cv2.THRESH_TRUNC)
ret,thresh4=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO)
ret,thresh5=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO_INV)

#显示结果
titles = ['Gray Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [GrayImage, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
   plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
   plt.title(titles[i])
   plt.xticks([]),plt.yticks([])
plt.show()

 

运行结果如下所示:(注意一个窗口多张图像的用法


 

参考资料

[1] https://blog.csdn.net/Eastmount/article/details/83548652

[2] Python+OpenCV图像处理

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zaishuiyifangxym/article/details/89556318

智能推荐

分布式光纤传感器的全球与中国市场2022-2028年:技术、参与者、趋势、市场规模及占有率研究报告_预计2026年中国分布式传感器市场规模有多大-程序员宅基地

文章浏览阅读3.2k次。本文研究全球与中国市场分布式光纤传感器的发展现状及未来发展趋势,分别从生产和消费的角度分析分布式光纤传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。主要生产商包括:FISO TechnologiesBrugg KabelSensor HighwayOmnisensAFL GlobalQinetiQ GroupLockheed MartinOSENSA Innovati_预计2026年中国分布式传感器市场规模有多大

07_08 常用组合逻辑电路结构——为IC设计的延时估计铺垫_基4布斯算法代码-程序员宅基地

文章浏览阅读1.1k次,点赞2次,收藏12次。常用组合逻辑电路结构——为IC设计的延时估计铺垫学习目的:估计模块间的delay,确保写的代码的timing 综合能给到多少HZ,以满足需求!_基4布斯算法代码

OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版-程序员宅基地

文章浏览阅读3.3k次,点赞3次,收藏5次。OpenAI Manager助手(基于SpringBoot和Vue)_chatgpt网页版

关于美国计算机奥赛USACO,你想知道的都在这_usaco可以多次提交吗-程序员宅基地

文章浏览阅读2.2k次。USACO自1992年举办,到目前为止已经举办了27届,目的是为了帮助美国信息学国家队选拔IOI的队员,目前逐渐发展为全球热门的线上赛事,成为美国大学申请条件下,含金量相当高的官方竞赛。USACO的比赛成绩可以助力计算机专业留学,越来越多的学生进入了康奈尔,麻省理工,普林斯顿,哈佛和耶鲁等大学,这些同学的共同点是他们都参加了美国计算机科学竞赛(USACO),并且取得过非常好的成绩。适合参赛人群USACO适合国内在读学生有意向申请美国大学的或者想锻炼自己编程能力的同学,高三学生也可以参加12月的第_usaco可以多次提交吗

MySQL存储过程和自定义函数_mysql自定义函数和存储过程-程序员宅基地

文章浏览阅读394次。1.1 存储程序1.2 创建存储过程1.3 创建自定义函数1.3.1 示例1.4 自定义函数和存储过程的区别1.5 变量的使用1.6 定义条件和处理程序1.6.1 定义条件1.6.1.1 示例1.6.2 定义处理程序1.6.2.1 示例1.7 光标的使用1.7.1 声明光标1.7.2 打开光标1.7.3 使用光标1.7.4 关闭光标1.8 流程控制的使用1.8.1 IF语句1.8.2 CASE语句1.8.3 LOOP语句1.8.4 LEAVE语句1.8.5 ITERATE语句1.8.6 REPEAT语句。_mysql自定义函数和存储过程

半导体基础知识与PN结_本征半导体电流为0-程序员宅基地

文章浏览阅读188次。半导体二极管——集成电路最小组成单元。_本征半导体电流为0

随便推点

【Unity3d Shader】水面和岩浆效果_unity 岩浆shader-程序员宅基地

文章浏览阅读2.8k次,点赞3次,收藏18次。游戏水面特效实现方式太多。咱们这边介绍的是一最简单的UV动画(无顶点位移),整个mesh由4个顶点构成。实现了水面效果(左图),不动代码稍微修改下参数和贴图可以实现岩浆效果(右图)。有要思路是1,uv按时间去做正弦波移动2,在1的基础上加个凹凸图混合uv3,在1、2的基础上加个水流方向4,加上对雾效的支持,如没必要请自行删除雾效代码(把包含fog的几行代码删除)S..._unity 岩浆shader

广义线性模型——Logistic回归模型(1)_广义线性回归模型-程序员宅基地

文章浏览阅读5k次。广义线性模型是线性模型的扩展,它通过连接函数建立响应变量的数学期望值与线性组合的预测变量之间的关系。广义线性模型拟合的形式为:其中g(μY)是条件均值的函数(称为连接函数)。另外,你可放松Y为正态分布的假设,改为Y 服从指数分布族中的一种分布即可。设定好连接函数和概率分布后,便可以通过最大似然估计的多次迭代推导出各参数值。在大部分情况下,线性模型就可以通过一系列连续型或类别型预测变量来预测正态分布的响应变量的工作。但是,有时候我们要进行非正态因变量的分析,例如:(1)类别型.._广义线性回归模型

HTML+CSS大作业 环境网页设计与实现(垃圾分类) web前端开发技术 web课程设计 网页规划与设计_垃圾分类网页设计目标怎么写-程序员宅基地

文章浏览阅读69次。环境保护、 保护地球、 校园环保、垃圾分类、绿色家园、等网站的设计与制作。 总结了一些学生网页制作的经验:一般的网页需要融入以下知识点:div+css布局、浮动、定位、高级css、表格、表单及验证、js轮播图、音频 视频 Flash的应用、ul li、下拉导航栏、鼠标划过效果等知识点,网页的风格主题也很全面:如爱好、风景、校园、美食、动漫、游戏、咖啡、音乐、家乡、电影、名人、商城以及个人主页等主题,学生、新手可参考下方页面的布局和设计和HTML源码(有用点赞△) 一套A+的网_垃圾分类网页设计目标怎么写

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁_.net dll 全局目录-程序员宅基地

文章浏览阅读614次,点赞7次,收藏11次。之前找到一个修改 exe 中 DLL地址 的方法, 不太好使,虽然能正确启动, 但无法改变 exe 的工作目录,这就影响了.Net 中很多获取 exe 执行目录来拼接的地址 ( 相对路径 ),比如 wwwroot 和 代码中相对目录还有一些复制到目录的普通文件 等等,它们的地址都会指向原来 exe 的目录, 而不是自定义的 “lib” 目录,根本原因就是没有修改 exe 的工作目录这次来搞一个启动程序,把 .net 的所有东西都放在一个文件夹,在文件夹同级的目录制作一个 exe._.net dll 全局目录

BRIEF特征点描述算法_breif description calculation 特征点-程序员宅基地

文章浏览阅读1.5k次。本文为转载,原博客地址:http://blog.csdn.net/hujingshuang/article/details/46910259简介 BRIEF是2010年的一篇名为《BRIEF:Binary Robust Independent Elementary Features》的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度..._breif description calculation 特征点

房屋租赁管理系统的设计和实现,SpringBoot计算机毕业设计论文_基于spring boot的房屋租赁系统论文-程序员宅基地

文章浏览阅读4.1k次,点赞21次,收藏79次。本文是《基于SpringBoot的房屋租赁管理系统》的配套原创说明文档,可以给应届毕业生提供格式撰写参考,也可以给开发类似系统的朋友们提供功能业务设计思路。_基于spring boot的房屋租赁系统论文

推荐文章

热门文章

相关标签