国密算法—SM2介绍及基于BC的实现_bc库设置sm2的加密模式c1c3c2-程序员宅基地

技术标签: 工具  SM2  

国密算法—SM2介绍及基于BC的实现

简介

SM2密码算法是一种椭圆(非对称)密码算法

  • 加密强度:256位(私钥长度);
  • 公私钥长度:公钥长度为64字节(512位),私钥32字节(256位);
  • 支持签名最大数据量及签名结果长度:最大签名数据量长度无限制;签名结果为64字节(但由于签名后会做ASN.1编码,实际输出长度为70-72字节);
  • 支持加密最大数据量及加密后结果长度:支持最大近128G字节数据长度;加密结果(C=C1C3C2)增加96字节【C1(64字节) + C3(32字节)】(如果首个字节为0x04则增加97字节,实际有效96字节)
私钥

SM2私钥是一个大于1且小于n-1的整数(n为SM2算法的阶,其值参见GM/T 0003),简记为k,长度为256位(32字节)。

公钥

SM2公钥是SM2曲线上的一个点,由横坐标和纵坐标两个分量来表示,记为(x,y),简记为Q,每个分量的长度为256位,总长度为512位(64字节,不包含公钥标识)。

数据格式
密钥数据格式
私钥数据格式

SM2算法私钥数据格式的ASN.1定义为:

SM2PrivateKey::=INTEGER
公钥数据格式

SM2算法公钥数据格式的ASN.1定义为:

SM2PublicKey::=BIT STRING

SM2PublicKey为BIT STRING类型,内容为04||X|||Y,其中X和Y分别标示公钥的x分量和y的分量,其长度各位256位。04用来标示公钥为非压缩格式(压缩格式用02标识)。

加密数据格式

SM2算法加密后的数据格式的ASN.1定义为:

SM2Cipher::= SEQENCE{
  XCoordinate		INTEGER,					--x 分量 32字节(256位)
  YCoordinate		INTEGER,					--y 分量 32字节(256位)
  HASH				OCTET STRING SIZE(32),	 	--杂凑值 32字节(256位)
  CipherText		OCTET STRING 				--密文   等于明文长度	
}

其中,HASH为使用SM3算法对明文数据运算得到的杂凑值,其长度固定为256位。CipherText是与明文等长的密文。因此SM2加密后的密文长度比明文长度增加了97字节(1字节04标识 + 32字节x分量 + 32字节y分量 + 32字节Hash

签名数据格式

SM2算法签名数据格式的ASN.1定义为:

SM2Signature::={
	R		INTEGER,	--签名值的第一部分 32字节(256位)
	S		INTEGER		--签名值的第二部分  32字节(256位)
}

R和S的长度各位32字节。因此签名后的数据长度为固定的64字节

计算过程
生成密钥

SM2密钥生成是指生成SM2算法的密钥对的过程,该密钥对包括私钥与之对应的公钥。其中,私钥长度为256位,公钥长度为512位。

  • 输入

  • 输出

    k SM2PrivateKey SM2私钥 256位

    Q SM2PublicKey SM2公钥 512位

详细计算过程参见GM/T 0003

加密

SM2加密是指使用指定的公开密钥对明文进行特定的加密计算,生成相应密文的过程。该密文只能由该指定公开密钥对应的私钥解密。

  • 输入

    Q SM2PublicKey SM2公钥

    m 字节串 待加密的明文数据

  • 输出

    c SM2Cipher 密文

其中:

  1. 输出参数c的格式由本规范7.2中定义;

  2. 输出参数c中的XCoordinateYCoordinate俗称C1)为随机产生的公钥的x分量和y分量256位;

  3. 输出参数c中的HASH俗称C3)的计算公式为HASH = SM3(x||m||y),其中,x,y为公钥Q的x分量和y分量;

  4. 输出参数c中的CipherText俗称C2)为加密密文,其长度等于明文长度。

详细的计算过程参见GM/T 0003GM/T 0004

解密

SM2解密是指使用指定的私钥对密文进行解密计算,还原对应明文的过程。

  • 输入

    d SM2PrivateKey SM2私钥

    c SM2Cipher 密文

  • 输出

    m 字节串 与密文对应的明文

m为SM2Cipher经过解密运算得到明文,该明文的长度与输入参数c中的CipherText(俗称C2)的长度相同。

详细的计算过程参见GM/T 0003

预处理
预处理1

预处理1是指使用签名方的用户身份标识和签名方公钥,通过运算得到Z指的过程。Z值用于预处理2,也用于SM2密钥协商协议。

  • 输入

    ID 字节串 用户身份标识

    Q SM2PublicKey 用户的公钥

  • 输出

    Z 字节串 预处理1的输出

计算公式为:

Z = SM3(ENTL||ID||a||b||XG||yG||XA||yA)

其中:

  • ENTL 为由2个字节标示的ID的比特长度;
  • ID 为用户身份标识;
  • a、b 为系统曲线参考;
  • XG、yG 为基点;
  • XA、yA 为用户公钥;

详细计算过程参见GM/T 0003GM/T 0004

预处理2

预处理2是指使用Z值和待签名消息,通过SM3运算得到的杂凑值H的过程。杂凑值H用于SM2数字签名。

  • 输入

    Z 字节串 预处理2的输入

    M 字节串 待签名消息

  • 输出

    H 字节串 杂凑值

计算公式为:

H = SM3(Z||M)

详细计算过程参见GM/T 0003GM/T 0004

数字签名

SM2签名是指使用预处理的结果和签名者的私钥,通过签名计算得到签名结果的过程。

  • 输入

    d SM2Privatekey 签名者私钥

    H 字节串 预处理2的结果

  • 输出

    sign SM2Signature 签名值

详细计算过程参见GM/T 0003

签名验证

SM2签名验证是指使用预处理2的结果、签名值和签名者的公钥。通过验签计算确定签名是否通过验证的过程。

  • 输入

    H 字节串 预处理2的结果

    sign SM2Signature 签名值

    Q PublicKey 签名者的公钥

  • 输出

    :表示验证通过;为:表示验证不通过

详细计算过程参见GM/T 0003

Java基于BC实现SM2加解密

BouncyCastle在1.57版本已经提供对SM椭圆曲线密码算法的支持,不过对SM2仅提供C1C2C3模式的加解密。在1.62+版本中已经增加了对C1C3C2模式加解密的支持。

 public enum Mode
    {
    
        C1C2C3, C1C3C2;
    }

这里使用BouncyCastle 1.68版本进行测试

@SpringBootTest
class DemoApplicationTests {
    
  
   @Test
    void contextLoads() {
    
        testSM2();
    }
  
   static void testSM2() {
    
        String publicKeyHex = null;
        String privateKeyHex = null;
        KeyPair keyPair = createECKeyPair();
        PublicKey publicKey = keyPair.getPublic();
        if (publicKey instanceof BCECPublicKey) {
    
            //获取65字节非压缩缩的十六进制公钥串(0x04)
            publicKeyHex = Hex.toHexString(((BCECPublicKey) publicKey).getQ().getEncoded(false));
            System.out.println("---->SM2公钥:" + publicKeyHex);
        }
        PrivateKey privateKey = keyPair.getPrivate();
        if (privateKey instanceof BCECPrivateKey) {
    
            //获取32字节十六进制私钥串
            privateKeyHex = ((BCECPrivateKey) privateKey).getD().toString(16);
            System.out.println("---->SM2私钥:" + privateKeyHex);
        }

        //TODO...可对以上公钥进行分发传输

        /**
         * 公钥加密
         */
        String data = "=========待加密数据=========";
        //将十六进制公钥串转换为 BCECPublicKey 公钥对象
        BCECPublicKey bcecPublicKey = getECPublicKeyByPublicKeyHex(publicKeyHex);
        String encryptData = encrypt(bcecPublicKey, data, 1);
        System.out.println("---->加密结果:" + encryptData);

        /**
         * 私钥解密
         */
        //将十六进制私钥串转换为 BCECPrivateKey 私钥对象
        BCECPrivateKey bcecPrivateKey = getBCECPrivateKeyByPrivateKeyHex(privateKeyHex);
        data = decrypt(bcecPrivateKey, encryptData, 1);
        System.out.println("---->解密结果:" + data);
    } 
  
   /**
     * 生成密钥对
     */
    static KeyPair createECKeyPair() {
    
        //使用标准名称创建EC参数生成的参数规范
        final ECGenParameterSpec sm2Spec = new ECGenParameterSpec("sm2p256v1");

        // 获取一个椭圆曲线类型的密钥对生成器
        final KeyPairGenerator kpg;
        try {
    
            kpg = KeyPairGenerator.getInstance("EC", new BouncyCastleProvider());
            // 使用SM2算法域参数集初始化密钥生成器(默认使用以最高优先级安装的提供者的 SecureRandom 的实现作为随机源)
            // kpg.initialize(sm2Spec);

            // 使用SM2的算法域参数集和指定的随机源初始化密钥生成器
            kpg.initialize(sm2Spec, new SecureRandom());

            // 通过密钥生成器生成密钥对
            return kpg.generateKeyPair();

        } catch (Exception e) {
    
            e.printStackTrace();
            return null;
        }
    }  
  
     /**
     * 公钥加密
     *
     * @param publicKey SM2公钥
     * @param data      明文数据
     * @param modeType  加密模式
     * @return
     */
    public static String encrypt(BCECPublicKey publicKey, String data, int modeType) {
    
        //加密模式
        SM2Engine.Mode mode;
        if (modeType == 1) {
    
            mode = SM2Engine.Mode.C1C3C2;
        } else {
    
            mode = SM2Engine.Mode.C1C2C3;
        }

        //通过公钥对象获取公钥的基本域参数。
        ECParameterSpec ecParameterSpec = publicKey.getParameters();
        ECDomainParameters ecDomainParameters = new ECDomainParameters(ecParameterSpec.getCurve(),
                ecParameterSpec.getG(), ecParameterSpec.getN());

        //通过公钥值和公钥基本参数创建公钥参数对象
        ECPublicKeyParameters ecPublicKeyParameters = new ECPublicKeyParameters(publicKey.getQ(), ecDomainParameters);

        //根据加密模式实例化SM2公钥加密引擎
        SM2Engine sm2Engine = new SM2Engine(mode);

        //初始化加密引擎
        sm2Engine.init(true, new ParametersWithRandom(ecPublicKeyParameters, new SecureRandom()));

        byte[] arrayOfBytes = null;
        try {
    
            //将明文字符串转换为指定编码的字节串
            byte[] in = data.getBytes("utf-8");

            //通过加密引擎对字节数串行加密
            arrayOfBytes = sm2Engine.processBlock(in, 0, in.length);
        } catch (Exception e) {
    
            System.out.println("SM2加密时出现异常:" + e.getMessage());
            e.printStackTrace();
        }

        //将加密后的字节串转换为十六进制字符串
        return Hex.toHexString(arrayOfBytes);
    }
  
     /**
     * 私钥解密
     *
     * @param privateKey SM私钥
     * @param cipherData 密文数据
     * @return
     */
    public static String decrypt(BCECPrivateKey privateKey, String cipherData, int modeType) {
    
        //解密模式
        SM2Engine.Mode mode;
        if (modeType == 1) {
    
            mode = SM2Engine.Mode.C1C3C2;
        } else {
    
            mode = SM2Engine.Mode.C1C2C3;
        }

        //将十六进制字符串密文转换为字节数组(需要与加密一致,加密是:加密后的字节数组转换为了十六进制字符串)
        byte[] cipherDataByte = Hex.decode(cipherData);

        //通过私钥对象获取私钥的基本域参数。
        ECParameterSpec ecParameterSpec = privateKey.getParameters();
        ECDomainParameters ecDomainParameters = new ECDomainParameters(ecParameterSpec.getCurve(),
                ecParameterSpec.getG(), ecParameterSpec.getN());

        //通过私钥值和私钥钥基本参数创建私钥参数对象
        ECPrivateKeyParameters ecPrivateKeyParameters = new ECPrivateKeyParameters(privateKey.getD(),
                ecDomainParameters);

        //通过解密模式创建解密引擎并初始化
        SM2Engine sm2Engine = new SM2Engine(mode);
        sm2Engine.init(false, ecPrivateKeyParameters);

        String result = null;
        try {
    
            //通过解密引擎对密文字节串进行解密
            byte[] arrayOfBytes = sm2Engine.processBlock(cipherDataByte, 0, cipherDataByte.length);
            //将解密后的字节串转换为utf8字符编码的字符串(需要与明文加密时字符串转换成字节串所指定的字符编码保持一致)
            result = new String(arrayOfBytes, "utf-8");
        } catch (Exception e) {
    
            System.out.println("SM2解密时出现异常" + e.getMessage());
        }
        return result;
    }
  
  
    //椭圆曲线ECParameters ASN.1 结构
    private static X9ECParameters x9ECParameters = GMNamedCurves.getByName("sm2p256v1");
    //椭圆曲线公钥或私钥的基本域参数。
    private static ECParameterSpec ecDomainParameters = new ECParameterSpec(x9ECParameters.getCurve(), x9ECParameters.getG(), x9ECParameters.getN());
  
   /**
     * 公钥字符串转换为 BCECPublicKey 公钥对象
     *
     * @param pubKeyHex 64字节十六进制公钥字符串(如果公钥字符串为65字节首个字节为0x04:表示该公钥为非压缩格式,操作时需要删除)
     * @return BCECPublicKey SM2公钥对象
     */
    public static BCECPublicKey getECPublicKeyByPublicKeyHex(String pubKeyHex) {
    
        //截取64字节有效的SM2公钥(如果公钥首个字节为0x04)
        if (pubKeyHex.length() > 128) {
    
            pubKeyHex = pubKeyHex.substring(pubKeyHex.length() - 128);
        }
        //将公钥拆分为x,y分量(各32字节)
        String stringX = pubKeyHex.substring(0, 64);
        String stringY = pubKeyHex.substring(stringX.length());
        //将公钥x、y分量转换为BigInteger类型
        BigInteger x = new BigInteger(stringX, 16);
        BigInteger y = new BigInteger(stringY, 16);
        //通过公钥x、y分量创建椭圆曲线公钥规范
        ECPublicKeySpec ecPublicKeySpec = new ECPublicKeySpec(x9ECParameters.getCurve().createPoint(x, y), ecDomainParameters);
        //通过椭圆曲线公钥规范,创建出椭圆曲线公钥对象(可用于SM2加密及验签)
        return new BCECPublicKey("EC", ecPublicKeySpec, BouncyCastleProvider.CONFIGURATION);
    } 
  
  
    /**
     * 私钥字符串转换为 BCECPrivateKey 私钥对象
     *
     * @param privateKeyHex: 32字节十六进制私钥字符串
     * @return BCECPrivateKey:SM2私钥对象
     */
    public static BCECPrivateKey getBCECPrivateKeyByPrivateKeyHex(String privateKeyHex) {
    
        //将十六进制私钥字符串转换为BigInteger对象
        BigInteger d = new BigInteger(privateKeyHex, 16);
        //通过私钥和私钥域参数集创建椭圆曲线私钥规范
        ECPrivateKeySpec ecPrivateKeySpec = new ECPrivateKeySpec(d, ecDomainParameters);
        //通过椭圆曲线私钥规范,创建出椭圆曲线私钥对象(可用于SM2解密和签名)
        return new BCECPrivateKey("EC", ecPrivateKeySpec, BouncyCastleProvider.CONFIGURATION);
    } 
}

测试结果

---->SM2公钥:045c798b7bdedff4ace6b935269b8cc79ddeac67000f4d4f94adbfc982398ce7b72343542b035a7b9242e4f470ce495d858d5129975d7ca207ddcfae59fc1eb66d
---->SM2私钥:466a7234630258356942a47fc32b848966c557aacbe7439d4a2bb397d0cf9144
---->加密结果:04bff9cab1e38d743f87b524dae8be97d3d0fce55d9f3771a5bcf02d9a6c162e96bdefb8e91ccffddacaecfb0281bbc22ae908484c5c1ecf57a7d654efc06f9a89b0ba182264eab6e0ba1a76b21edab10f4ee221b774bba979101a9e3c57affeeffcef48ead5039f4da57d8ea4b1541ec2a290530419b61cc99938f1f885fe10bb57
---->解密结果:=========待加密数据=========

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zcmain/article/details/114099664

智能推荐

oracle 12c 集群安装后的检查_12c查看crs状态-程序员宅基地

文章浏览阅读1.6k次。安装配置gi、安装数据库软件、dbca建库见下:http://blog.csdn.net/kadwf123/article/details/784299611、检查集群节点及状态:[root@rac2 ~]# olsnodes -srac1 Activerac2 Activerac3 Activerac4 Active[root@rac2 ~]_12c查看crs状态

解决jupyter notebook无法找到虚拟环境的问题_jupyter没有pytorch环境-程序员宅基地

文章浏览阅读1.3w次,点赞45次,收藏99次。我个人用的是anaconda3的一个python集成环境,自带jupyter notebook,但在我打开jupyter notebook界面后,却找不到对应的虚拟环境,原来是jupyter notebook只是通用于下载anaconda时自带的环境,其他环境要想使用必须手动下载一些库:1.首先进入到自己创建的虚拟环境(pytorch是虚拟环境的名字)activate pytorch2.在该环境下下载这个库conda install ipykernelconda install nb__jupyter没有pytorch环境

国内安装scoop的保姆教程_scoop-cn-程序员宅基地

文章浏览阅读5.2k次,点赞19次,收藏28次。选择scoop纯属意外,也是无奈,因为电脑用户被锁了管理员权限,所有exe安装程序都无法安装,只可以用绿色软件,最后被我发现scoop,省去了到处下载XXX绿色版的烦恼,当然scoop里需要管理员权限的软件也跟我无缘了(譬如everything)。推荐添加dorado这个bucket镜像,里面很多中文软件,但是部分国外的软件下载地址在github,可能无法下载。以上两个是官方bucket的国内镜像,所有软件建议优先从这里下载。上面可以看到很多bucket以及软件数。如果官网登陆不了可以试一下以下方式。_scoop-cn

Element ui colorpicker在Vue中的使用_vue el-color-picker-程序员宅基地

文章浏览阅读4.5k次,点赞2次,收藏3次。首先要有一个color-picker组件 <el-color-picker v-model="headcolor"></el-color-picker>在data里面data() { return {headcolor: ’ #278add ’ //这里可以选择一个默认的颜色} }然后在你想要改变颜色的地方用v-bind绑定就好了,例如:这里的:sty..._vue el-color-picker

迅为iTOP-4412精英版之烧写内核移植后的镜像_exynos 4412 刷机-程序员宅基地

文章浏览阅读640次。基于芯片日益增长的问题,所以内核开发者们引入了新的方法,就是在内核中只保留函数,而数据则不包含,由用户(应用程序员)自己把数据按照规定的格式编写,并放在约定的地方,为了不占用过多的内存,还要求数据以根精简的方式编写。boot启动时,传参给内核,告诉内核设备树文件和kernel的位置,内核启动时根据地址去找到设备树文件,再利用专用的编译器去反编译dtb文件,将dtb还原成数据结构,以供驱动的函数去调用。firmware是三星的一个固件的设备信息,因为找不到固件,所以内核启动不成功。_exynos 4412 刷机

Linux系统配置jdk_linux配置jdk-程序员宅基地

文章浏览阅读2w次,点赞24次,收藏42次。Linux系统配置jdkLinux学习教程,Linux入门教程(超详细)_linux配置jdk

随便推点

matlab(4):特殊符号的输入_matlab微米怎么输入-程序员宅基地

文章浏览阅读3.3k次,点赞5次,收藏19次。xlabel('\delta');ylabel('AUC');具体符号的对照表参照下图:_matlab微米怎么输入

C语言程序设计-文件(打开与关闭、顺序、二进制读写)-程序员宅基地

文章浏览阅读119次。顺序读写指的是按照文件中数据的顺序进行读取或写入。对于文本文件,可以使用fgets、fputs、fscanf、fprintf等函数进行顺序读写。在C语言中,对文件的操作通常涉及文件的打开、读写以及关闭。文件的打开使用fopen函数,而关闭则使用fclose函数。在C语言中,可以使用fread和fwrite函数进行二进制读写。‍ Biaoge 于2024-03-09 23:51发布 阅读量:7 ️文章类型:【 C语言程序设计 】在C语言中,用于打开文件的函数是____,用于关闭文件的函数是____。

Touchdesigner自学笔记之三_touchdesigner怎么让一个模型跟着鼠标移动-程序员宅基地

文章浏览阅读3.4k次,点赞2次,收藏13次。跟随鼠标移动的粒子以grid(SOP)为partical(SOP)的资源模板,调整后连接【Geo组合+point spirit(MAT)】,在连接【feedback组合】适当调整。影响粒子动态的节点【metaball(SOP)+force(SOP)】添加mouse in(CHOP)鼠标位置到metaball的坐标,实现鼠标影响。..._touchdesigner怎么让一个模型跟着鼠标移动

【附源码】基于java的校园停车场管理系统的设计与实现61m0e9计算机毕设SSM_基于java技术的停车场管理系统实现与设计-程序员宅基地

文章浏览阅读178次。项目运行环境配置:Jdk1.8 + Tomcat7.0 + Mysql + HBuilderX(Webstorm也行)+ Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:Springboot + mybatis + Maven +mysql5.7或8.0+html+css+js等等组成,B/S模式 + Maven管理等等。环境需要1.运行环境:最好是java jdk 1.8,我们在这个平台上运行的。其他版本理论上也可以。_基于java技术的停车场管理系统实现与设计

Android系统播放器MediaPlayer源码分析_android多媒体播放源码分析 时序图-程序员宅基地

文章浏览阅读3.5k次。前言对于MediaPlayer播放器的源码分析内容相对来说比较多,会从Java-&amp;amp;gt;Jni-&amp;amp;gt;C/C++慢慢分析,后面会慢慢更新。另外,博客只作为自己学习记录的一种方式,对于其他的不过多的评论。MediaPlayerDemopublic class MainActivity extends AppCompatActivity implements SurfaceHolder.Cal..._android多媒体播放源码分析 时序图

java 数据结构与算法 ——快速排序法-程序员宅基地

文章浏览阅读2.4k次,点赞41次,收藏13次。java 数据结构与算法 ——快速排序法_快速排序法