”梯度下降“ 的搜索结果

     机器学习中我们经常可以看见梯度下降这个名词,但是什么是梯度下降?梯度下降是用来干什么的?网上一大堆文章,看到最后也没看出个名堂出来,刚好今天看到了篇文章,然后结合自己的一些理解,记录下。 【什么是梯度...

     梯度下降(Gradient descent)算法详解 说起梯度下降算法,其实并不是很难,它的重要作用就是求函数的极值。梯度下降就是求一个函数的最小值,对应的梯度上升就是求函数最大值。为什么这样说呢?兔兔之后会详细讲解的...

     在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度  在微积分里面,对多元...

     梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y...

     在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度  在微积分里面,对多元...

     在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。这里就对梯度下降法做一个完整的总结。 1. 梯度  在微积分里面,对多元...

       本文主要对梯度下降算法的基本原理进行了讲解,然后使用手写梯度下降算法解决了线性回归问题。最后对 PyTorch 中的反向传播函数进行了讲解并利用该函数简明快速的完成了损失的求导与模型的训练。 梯度下降算法一...

     梯度下降法不是机器学习算法,不能用来解决分类或回归问题,而是一种基于搜索的最优化方法,作用是优化目标函数,如求损失函数的最小值,即梯度下降法。 梯度 梯度的本意是一个向量(矢量),表示某一函数在该点处的...

     三种梯度下降算法的比较和几种优化算法 - 知乎 pytorch学习系列(4):常用优化算法_ch ur h的博客-程序员信息网 一、问题的提出 大多数机器学习或者深度学习算法都涉及某种形式的优化。 优化指的是改变 以最小化或...

     小批量随机梯度下降 在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,因此它有时也被称为批量梯度下降(batch gradient descent)。 随机梯度下降在每次迭代中只随机采样一个样本来计算梯度。 可以在每轮...

     一、 什么是梯度下降算法 梯度下降法(Gradient descent )是一个一阶最优化算法,通常也称为最陡下降法 ,要使用梯度下降法找到一个函数的局部极小值 ,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的...

     梯度下降(Gradient Descent)算法是机器学习中使用非常广泛的优化算法。当前流行的机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。 【思想】:要找到某函数的最小值,最好的方法是沿着该函数的梯度...

     梯度下降算法 Gradient Descent GD是沿梯度下降的方向连续迭代逼近求最小值的过程,本文将实现以下梯度下降算法的python实现。 简单梯度下降算法 批量梯度下降算法 随机梯度下降算法 简单梯度下降算法 简单梯度...

     优化算法中,梯度下降法是最简单、最常见的一种,在深度学习的训练中被广为使用。在本文中,SIGAI 将为大家系统的讲述梯度下降法的原理和实现细节问题最优化问题最优化问题是求解函数极值的问题,包括极大值和极小值...

     首先来看看梯度下降的一个直观的解释。比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的...

10  
9  
8  
7  
6  
5  
4  
3  
2  
1