Python基于OpenCV&YOLO台球击球路线规划系统(源码&部署教程)_桌球延长线源码-程序员宅基地

技术标签: python  OpenCV  计算机视觉  目标检测  opencv  

1.项目效果展示

1.png

2.png

3.png

4.png

2.视频演示

3.YOLOv7算法简介

YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器

并在 GPU V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
5.png

此外, YOLOv7 的在速度和精度上的表现也优于 YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、DETR 等多种目标检测器。

4.YOLOv7 技术方法

近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。

该研究的主要贡献包括:

(1) 设计了几种可训练的 bag-of-freebies 方法,使得实时目标检测可以在不增加推理成本的情况下大大提高检测精度;

(2) 对于目标检测方法的演进,研究者发现了两个新问题:一是重参数化的模块如何替换原始模块,二是动态标签分配策略如何处理分配给不同输出层的问题,并提出了解决这两个问题的方法;

(3) 提出了实时目标检测器的「扩充(extend)」和「复合扩展(compound scale)」方法,以有效地利用参数和计算;

(4) 该研究提出的方法可以有效减少 SOTA 实时目标检测器约 40% 的参数和 50% 的计算量,并具有更快的推理速度和更高的检测精度。

在大多数关于设计高效架构的文献中,人们主要考虑的因素包括参数的数量、计算量和计算密度。下图 2(b)中 CSPVoVNet 的设计是 VoVNet 的变体。CSPVoVNet 的架构分析了梯度路径,以使不同层的权重能够学习更多不同的特征,使推理更快、更准确。图 2 中的 ELAN 则考虑了「如何设计一个高效网络」的问题。

YOLOv7 研究团队提出了基于 ELAN 的扩展 E-ELAN,其主要架构如图所示。
6.png
新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。

无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。

在架构方面,E-ELAN 只改变了计算块的架构,而过渡层(transition layer)的架构完全没有改变。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。
因此,对基于串联的模型,我们不能单独分析不同的扩展因子,而必须一起考虑。该研究提出图 (c),即在对基于级联的模型进行扩展时,只需要对计算块中的深度进行扩展,其余传输层进行相应的宽度扩展。这种复合扩展方法可以保持模型在初始设计时的特性和最佳结构。

此外,该研究使用梯度流传播路径来分析如何重参数化卷积,以与不同的网络相结合。下图展示了该研究设计的用于 PlainNet 和 ResNet 的「计划重参数化卷积」。
7.png

5.台球击球路线原理

(1)球路的选定

台球的瞄准方法,是根据力的直线传递原理,通过主球撞击目标球,目标球被撞击后,便沿着直线进入球袋。因为球台上有6个球袋,分别固定在四角和边岸中部,而球是可以在球台上到处滚动的,要想把其中某一个球打进球袋,必须在球群中观察选择,哪个球的球路、角度最合适、容易进袋,在袋口附近有一个目标球,要想使这个球进袋,便要先看看球路是否合适,然后由球袋口中心,通过目标球中心,划一条直线,这条直线便是目标球进袋要走的路线。

(2)目标球上的击点

因为目标球没有外力推动本身是不能滚动的,必须通过主球的撞击才行。根据力的直线传递原理,要把某个目标球打进球袋,不能随便乱撞目标球上的任何点位,必须根据目标球的进袋线路,确定主球应该撞击目标球上的击点位置,才能完成打球入袋。
  由目标球所对着的球袋中心,经过目标球中心延长线,这条线和目标球外圆相交在M点,这个点便是目标球上的击点。

(3)瞄准点

目标球上的击点确定之后,接着要确定瞄准点的位置。从目标球上的击点M,再沿这条直线向后,量出一段与球的半径相等的长度,最远点T就是瞄准点。以T点为圆心划一个圆形虚线,这个圆球形表示主球要撞击目标球必须来到的位置,主球与目标球的外圆才能在M点相交,与目标球相撞击,主球上的力量便通过M点传递给目标球,使它沿目标球球路入袋。
7.png

6.整合代码实现

import torch, cv2, os, tqdm
import numpy as np

import numpy as np

from yolov5.yolo import YOLOV5_Detect, opt

def get_hole(pred):
    pred[pred == 1] = 0
    pred[pred != 0] = 255
    contours, hierarchy = cv2.findContours(pred[:, :, 0], cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    return contours

def distance(x1,y1,x2,y2):
    return ((x1 - x2)**2+(y1 - y2)**2)**0.5

if __name__ == '__main__':
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(DEVICE)

    model = torch.load('model.pkl')
    model.to(DEVICE)

    if not os.path.exists('output'):
        os.mkdir('output')

    path = 'detect'


    yolo_detect = YOLOV5_Detect(**vars(opt))

    for i in tqdm.tqdm(os.listdir(path)):
        # 读取图像
        ori_img = cv2.imdecode(np.fromfile('{}/{}'.format(path, i), np.uint8), cv2.IMREAD_COLOR)
        yolov5_res,balllist,ballvalue = yolo_detect.detect(ori_img)
        # 记录原图尺寸
        img_shape = ori_img.shape
        # Resize到训练大小 640*320
        img_ = cv2.resize(ori_img, (640, 320))
        # 转换通道 归一化
        img = np.transpose(np.expand_dims(img_, axis=0), (0, 3, 1, 2)) / 255.0
        # 转换成tensor格式
        img = torch.from_numpy(img).to(DEVICE).float()
        # 预测
        pred = np.argmax(model(img).cpu().detach().numpy()[0], axis=0)

        # 1 2 对应着目标类别
        pred_mask = []
        for j in pred.reshape((-1)):
            if j == 0:
                pred_mask.append(np.array([0, 0, 0]))
            elif j == 1:
                pred_mask.append(np.array([0, 0, 255]))
            elif j == 2:
                pred_mask.append(np.array([255, 0, 0]))
        pred_mask = np.array(pred_mask, dtype=np.uint8).reshape((pred.shape[0], pred.shape[1], 3))

        pred = np.expand_dims(pred, axis=-1)
        pred = np.repeat(pred, axis=-1, repeats=3)
        pred = np.array(pred, dtype=np.uint8)
        pred = cv2.resize(pred, (img_shape[1], img_shape[0]), interpolation=cv2.INTER_NEAREST)
        pred_mask = cv2.resize(pred_mask, (img_shape[1], img_shape[0]), interpolation=cv2.INTER_NEAREST)
        contours = get_hole(pred)

        pred[pred == 0] = 255
        pred[pred != 255] = 0
        yolov5_res = yolov5_res & pred
        # yolov5_res = cv2.addWeighted(yolov5_res, 0.5, pred_mask, 0.5, 0)
        # ori_img = yolov5_res & pred

        holes_coordinate = []
        radius = 0
        number = 0
        for cnts in contours:
            x, y, w, h = cv2.boundingRect(cnts)
            holes_coordinate.append([x, y, w, h])
            radius = radius + (w + h)/2
            number = number + 1
        holllist = []
        hollvalue = []
        holes_coordinate = sorted(holes_coordinate, key=lambda x:x[2] * x[3], reverse=True)[:6]
        holes_coordinate = sorted(holes_coordinate, key=lambda x:x[1])
        for idx, (x, y, w, h) in enumerate(sorted(holes_coordinate[:3], key=lambda x:x[0])):
            cv2.rectangle(yolov5_res, (x, y), (x + w, y + h), (255, 0, 0), 2)
            cv2.putText(yolov5_res, '{:.0f}'.format(idx + 1),
                        (x, y + 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0,
                        (255, 0, 0), 2)
            holllist.append(idx + 1)
            hollvalue.append([x + w / 2, y + h / 2, (w + h) / 2])
            #print('hole {} x_center:{:.2f} y_center:{:.2f} radius:{:.2f}'.format(idx + 1, x + w / 2, y + h / 2, (w + h) / 2))

        for idx, (x, y, w, h) in enumerate(sorted(holes_coordinate[3:], key=lambda x:x[0])):
            cv2.rectangle(yolov5_res, (x, y), (x + w, y + h), (255, 0, 0), 2)
            cv2.putText(yolov5_res, '{:.0f}'.format(idx + 4),
                        (x, y + 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0,
                        (255, 0, 0), 2)
            holllist.append(idx + 4)
            hollvalue.append([x + w / 2, y + h / 2, (w + h) / 2])
            #print('hole {} x_center:{:.2f} y_center:{:.2f} radius:{:.2f}'.format(idx + 4, x + w / 2, y + h / 2, (w + h) / 2))
        for m in range(len(balllist)):
            cv2.circle(yolov5_res, (int(ballvalue[m][0]),int(ballvalue[m][1])), int(ballvalue[m][2]), [0,0,255], 2)
        cv2.imshow('input', yolov5_res)
        cv2.waitKey(0)
        print(balllist)
        print(ballvalue)
        print(holllist)
        print(hollvalue)
        a = input("请输入母球编号: ")
        b = input("请输入目标球编号: ")
        c = input("请输入袋口编号: ")
        x1 = int(ballvalue[balllist.index(int(a))][0])
        y1 = int(ballvalue[balllist.index(int(a))][1])
        r1 = int(ballvalue[balllist.index(int(a))][2])
        x2 = int(ballvalue[balllist.index(int(b))][0])
        y2 = int(ballvalue[balllist.index(int(b))][1])
        r2 = int(ballvalue[balllist.index(int(b))][2])
        x3 = int(hollvalue[holllist.index(int(c))][0])
        y3 = int(hollvalue[holllist.index(int(c))][1])
        r3 = int(hollvalue[holllist.index(int(c))][2])
        #画出目标球的可能行进路线:
        def drawline(yolov5_res,x1,y1,x2,y2,r):
            gen = ((x2-x1)**2+(y2-y1)**2)**0.5
            x3 = int(x1 - (y2-y1)*r/gen)
            y3 = int(y1 + (x2-x1)*r/gen)
            x4 = int(x2 - (y2-y1)*r/gen)
            y4 = int(y2 + (x2-x1)*r/gen)
            x5 = int(x1 + (y2 - y1) * r / gen)
            y5 = int(y1 - (x2 - x1) * r / gen)
            x6 = int(x2 + (y2 - y1) * r / gen)
            y6 = int(y2 - (x2 - x1) * r / gen)
            cv2.line(yolov5_res, (x3, y3), (x4, y4), (255, 255, 255), 3)
            cv2.line(yolov5_res, (x5, y5), (x6, y6), (255, 255, 255), 3)
            return yolov5_res

        cv2.line(yolov5_res,(x2,y2),(x3,y3),(255, 0, 0),3)
        yolov5_res = drawline(yolov5_res,x2,y2,x3,y3,r2)
        #画出撞击点
        xz = int(x3 + (x2 - x3)*((r1+r2) + distance(x2,y2,x3,y3))/(distance(x2,y2,x3,y3)))
        yz = int(y3 + (y2 - y3)*((r1+r2) + distance(x2,y2,x3,y3))/(distance(x2,y2,x3,y3)))
        cv2.circle(yolov5_res, (xz,yz), int(ballvalue[balllist.index(int(a))][2]), [255, 0, 0], 2)
        #画出母球的行进路线
        cv2.line(yolov5_res, (xz, yz), (x1, y1), (255, 0, 0), 3)
        yolov5_res = drawline(yolov5_res, xz, yz, x1, y1,r1)
        cv2.imshow('output',yolov5_res)
        cv2.waitKey(0)

        #cv2.imwrite('output/{}'.format(i), yolov5_res)

7.项目文件展示

5.png

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/cheng2333333/article/details/126734606

智能推荐

杀毒软件业野蛮生长法则:自己研发病毒自己杀-程序员宅基地

文章浏览阅读52次。时隔4个月后,瑞星杀毒造假案又有了戏剧性的变化。近日,瑞星杀毒造假案的主角——北京市公安局网监处原处长于兵的二审结果仍维持一审的死缓判决。而据于兵的最新供认资料,相当一部分病毒是杀毒软件公司自己的科技力量研制的。于兵供认,瑞星公司向其行贿时就提出条件,由公安机关发出病毒警报,提示用户下载该公司杀毒软件进行杀毒,而病毒则是由瑞星公司“研制”的。“其实这是杀毒软件行业里的公开秘密。”国内一家知名...

密码学考点整理_移位密码和vigenere密码的异同是什么-程序员宅基地

文章浏览阅读6k次,点赞4次,收藏35次。考试重点1. 密码体制分类对称密码体制和非对称密码体制;2. DES和AES算法的特点(结构、密钥长度,分组长度,DES弱密钥)及其过程(置换过程,S盒查表过程),AES的轮结构DESDES结构首先是一个初始置换IP,用于重排明文分组的64比特;相同功能的16轮变换,每轮都有置换和代换;第16轮的输出分为左右两半并被交换次序;最后经过一个逆初始置换产生64比特密文;DES结构图如下:密钥长度:56分组长度:64DES弱密钥:待续了解即可DES 分组长度_移位密码和vigenere密码的异同是什么

基于微信小程序+Springboot线上租房平台设计和实现【三端实现小程序+WEB响应式用户前端+后端管理】_微信小程序租房平台怎么弄-程序员宅基地

文章浏览阅读2.7w次,点赞97次,收藏158次。系统功能包括管理员服务端:首页、轮播图管理、公告信息管理、系统用户(管理员、租客用户、房主用户)资源管理(新闻列表、新闻分类列表)模块管理(房源信息、房源咨询、租赁申请、入住信息、房租信息、反馈信息、通知信息、房屋类型)个人管理;用户客户端:首页、公告信息、新闻资讯、房源信息等功能。_微信小程序租房平台怎么弄

JavaScript - 事件对象 - 鼠标操作_js鼠标点击事件菜鸟教程-程序员宅基地

文章浏览阅读417次。文章目录一、禁止鼠标右键菜单二、禁止鼠标选中三、鼠标事件对象四、鼠标事件对象clientXpageXscreenX五、常用键盘事件一、禁止鼠标右键菜单<body> <script> document.addEventListener('contextmenu', function (e) { e.preventDefault(); }) </script></body>二、禁止_js鼠标点击事件菜鸟教程

直流有刷电机位置环控制与位置速度双环控制(位置式PID)流程解析_偏位置环控制速度-程序员宅基地

文章浏览阅读7.1k次,点赞15次,收藏100次。PID算法中位置环与位置速度双环的对比分析_偏位置环控制速度

13. HTTP1.0 HTTP 1.1 HTTP 2.0主要区别_http 0.13.1-程序员宅基地

文章浏览阅读175次。HTTP1.0 HTTP 1.1 HTTP 2.0主要区别HTTP1.0 HTTP 1.1主要区别长连接节约带宽HOST域HTTP1.1 HTTP 2.0主要区别多路复用数据压缩服务器推送HTTP1.0 HTTP 1.1主要区别长连接HTTP 1.0需要使用keep-alive参数来告知服务器端要建立一个长连接,而HTTP1.1默认支..._http 0.13.1

随便推点

Linux命令_禅道的运行日志放在哪-程序员宅基地

文章浏览阅读309次。笔记_禅道的运行日志放在哪

Web实训项目--网页设计(附源码)_web前端网页设计代码-程序员宅基地

文章浏览阅读4.3w次,点赞79次,收藏882次。我们要使用这些知识实现一个简单的网页设计,利用HTML的a标签做文本内容跳转以及超链接的应用,CSS设计内容样式和图片、动画、视频的大小位置格式,JavaScript实现轮播图效果等。学习如何设计网页中的轮播图和动画效果,并掌握a标签文本内容跳转、超链接的应用、播放音乐与视频等操作。通过对Web知识内容的了解,我们掌握了HTML、CSS和JavaScript的基本知识以及利用它们实现一些简单的应用。1、使用Web知识实现一个简单的网页设计,利用HTML的a标签做文本内容跳转以及超链接的应用。_web前端网页设计代码

Matlab:非负 ODE 解_matlab銝要onnegative-程序员宅基地

Matlab中讲解了如何约束ODE解为非负解的示例,并以绝对值函数和膝盖问题为例进行了说明。文章指出在某些情况下,由于方程的物理解释或解性质的原因,施加非负约束是必要的。

关于g2o_viewer data/result_after.g2o使用过程中coredump、与lsd_slam依赖包libg2o冲突问题_libg2o_-程序员宅基地

文章浏览阅读1.1k次。电脑上装的东西多了就很容引起版本或者依赖问题。。。这不,按照高博教程做octomap实验时候运行g2o_viewer data/result_after.g2o时候就直接coredump。。。。回想起来自己ROS系统中装了libg2o,于是卸载之:sudo apt-get remove ros-indigo-libg2o然后重新执行g2o_viewer data/result_after.g2o注..._libg2o_

学习通选修刷课使用过程(懂得都懂)_学习通脚本-程序员宅基地

文章浏览阅读2w次,点赞58次,收藏268次。学习通不想好好上课系列_学习通脚本

将Total Commander设置为“默认”文件管理器?_total commander默认文件管理器-程序员宅基地

文章浏览阅读1.6k次。将Total Commander设置为“默认”文件管理器?法一:开始,运行,输入regedit ,回车: 定位到HKEY_LOCAL_MACHINE_total commander默认文件管理器

推荐文章

热门文章

相关标签