sklearn-第六节(PCA)_pca sklearn 方法-程序员宅基地

技术标签: python  机器学习  sklearn  

1、主成分分析法(PCA)思想及原理

1.1什么是主成分分析法

PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法(非监督的机器学习方法)。

其最主要的用途在于“降维”,通过析取主成分显出的最大的个别差异,发现更便于人类理解的特征。也可以用来削减回归分析和聚类分析中变量的数目。

1.2为什么要做主成分分析

在很多场景中需要对多变量数据进行观测,在一定程度上增加了数据采集的工作量。更重要的是:多变量之间可能存在相关性,从而增加了问题分析的复杂性。

如果对每个指标进行单独分析,其分析结果往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。

因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。主成分分析与因子分析就属于这类降维算法。

1.3PCA的大致流程

PCA 所要做的工作,简单点说,就是对原始的空间中顺序地找一组相互正交的坐标轴,第一个轴是使得方差最大的,第二个轴是在与第一个轴正交的平面中使得方差最大的,第三个轴是在与第1、2个轴正交的平面中方差最大的,这样假设在 N 维空间中,我们可以找到 N 个这样的坐标轴,我们取前 r 个去近似这个空间,这样就从一个 N 维的空间压缩到 r 维的空间了,但是我们选择的 r 个坐标轴能够使得空间的压缩使得数据的损失最小。

因此,关键点就在于:如何找到新的投影方向使得原始数据的“信息量”损失最少

1.4样本信息量的衡量

样本的“信息量”指的是样本在特征方向上投影的方差。方差越大,则样本在该特征上的差异就越大,因此该特征就越重要。以《机器学习实战》上的图说明,在分类问题里,样本的方差越大,越容易将不同类别的样本区分开。

信息量

2.算法实现

2.1引入相关库

# 添加目录到系统路径方便导入模块,该项目的根目录为".../machine-learning-toy-code"
import sys
from pathlib import Path
curr_path = str(Path().absolute())
parent_path = str(Path().absolute().parent)
p_parent_path = str(Path().absolute().parent.parent)
sys.path.append(p_parent_path) 
print(f"主目录为:{
      p_parent_path}")
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

from sklearn.decomposition import PCA
import numpy as np
import matplotlib.pyplot as plt

2.2利用PCA降维

train_dataset = datasets.MNIST(root = p_parent_path+'/datasets/', train = True,transform = transforms.ToTensor(), download = False)
test_dataset = datasets.MNIST(root = p_parent_path+'/datasets/', train = False, 
                               transform = transforms.ToTensor(), download = False)

batch_size = len(train_dataset)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
X_train,y_train = next(iter(train_loader))
X_test,y_test = next(iter(test_loader))
X_train,y_train = X_train.cpu().numpy(),y_train.cpu().numpy() # tensor转为array形式)
X_test,y_test = X_test.cpu().numpy(),y_test.cpu().numpy() # tensor转为array形式)
X_train = X_train.reshape(X_train.shape[0],784)
X_test = X_test.reshape(X_test.shape[0],784)
m , p = X_train.shape # m:训练集数量,p:特征维度数
print(f"原本特征维度数:{
      p}") # 特征维度数为784

# n_components是>=1的整数时,表示期望PCA降维后的特征维度数
# n_components是[0,1]的数时,表示主成分的方差和所占的最小比例阈值,PCA类自己去根据样本特征方差来决定降维到的维度
model = PCA(n_components=0.95) 
lower_dimensional_data = model.fit_transform(X_train)
print(f"降维后的特征维度数:{
      model.n_components_}")

下面将样本还原,观察原始图片与原始图片的差异

approximation = model.inverse_transform(lower_dimensional_data) # 降维后的数据还原
plt.figure(figsize=(8,4));

# 原始图片
plt.subplot(1, 2, 1);
plt.imshow(X_train[1].reshape(28,28),
              cmap = plt.cm.gray, interpolation='nearest',
              clim=(0, 1));
plt.xlabel(f'{
      X_train.shape[1]} components', fontsize = 14)
plt.title('Original Image', fontsize = 20)
# 降维后的图片
plt.subplot(1, 2, 2);
plt.imshow(approximation[1].reshape(28, 28),
              cmap = plt.cm.gray, interpolation='nearest',
              clim=(0,1));
plt.xlabel(f'{
      model.n_components_} components', fontsize = 14)
plt.title('95% of Explained Variance', fontsize = 20)
plt.show()

前后对比

2.3、不同主成分个数对应的可解释方差分析(Explained Variance)

model = PCA() # 这里需要分析所有主成分,所以不降维
model.fit(X_train)
tot = sum(model.explained_variance_) 
var_exp = [(i/tot)*100 for i in sorted(model.explained_variance_, reverse=True)] 
cum_var_exp = np.cumsum(var_exp)
plt.figure(figsize=(10, 5))
plt.step(range(1, p+1), cum_var_exp, where='mid',label='cumulative explained variance') # p:特征维度数
plt.title('Cumulative Explained Variance as a Function of the Number of Components')
plt.ylabel('Cumulative Explained variance')
plt.xlabel('Principal components')
plt.axhline(y = 95, color='k', linestyle='--', label = '95% Explained Variance')
plt.axhline(y = 90, color='c', linestyle='--', label = '90% Explained Variance')
plt.axhline(y = 85, color='r', linestyle='--', label = '85% Explained Variance')
plt.legend(loc='best')
plt.show()

不同主成分个数对应的可解释方差分析

def explained_variance(percentage, images): 
    '''
       :param: percentage [float]: 降维的百分比
       :return: approx_original: 降维后还原的图片
       :return: model.n_components_: 降维后的主成分个数
    '''   
    model = PCA(percentage)
    model.fit(images)
    components = model.transform(images)
    approx_original = model.inverse_transform(components)
    return approx_original,model.n_components_
plt.figure(figsize=(8,10));
percentages = [784,0.99,0.95,0.90]
for i in range(1,5):
    plt.subplot(2,2,i)
    im, n_components = explained_variance(percentages[i-1], X_train)
    im = im[5].reshape(28, 28) # 重建成图片
    plt.imshow(im,cmap = plt.cm.gray, interpolation='nearest',clim=(0,1))
    plt.xlabel(f'{
      n_components} Components', fontsize = 12)
    if i==1:
        plt.title('Original Image', fontsize = 14)
    else:
        plt.title(f'{
      percentages[i-1]*100}% of Explained Variance', fontsize = 14)
plt.show()

ada

3.总结

PCA法是通过选出使样本方差最大的维度来求主成分的。那么确定了主成分的方向向量后,就需要将高维数据向低维数据映射。方法就是将样本分别点乘每一个主成分向量(数),得到k个数并组成向量。以此类推,完成高维n到低维k的映射。其公式为: X ⋅ W k T = X k X \cdot W_{k}^{T}=X_{k} XWkT=Xk

我们在使用sklearn中提高的PCA方法时,需要先初始化实例对象(此时可以传递主成分个数),fit操作得到主成分后进行降维映射操作pca.transform。在初始化实例对象时,也可以传入一个数字,表示主成分所解释的方差比例,即每个主成分对原始数据方差的重要程度。忽略对原始方差影响小的成分,在时间和准确度之间做一个权衡。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_42258383/article/details/122247955

智能推荐

攻防世界_难度8_happy_puzzle_攻防世界困难模式攻略图文-程序员宅基地

文章浏览阅读645次。这个肯定是末尾的IDAT了,因为IDAT必须要满了才会开始一下个IDAT,这个明显就是末尾的IDAT了。,对应下面的create_head()代码。,对应下面的create_tail()代码。不要考虑爆破,我已经试了一下,太多情况了。题目来源:UNCTF。_攻防世界困难模式攻略图文

达梦数据库的导出(备份)、导入_达梦数据库导入导出-程序员宅基地

文章浏览阅读2.9k次,点赞3次,收藏10次。偶尔会用到,记录、分享。1. 数据库导出1.1 切换到dmdba用户su - dmdba1.2 进入达梦数据库安装路径的bin目录,执行导库操作  导出语句:./dexp cwy_init/[email protected]:5236 file=cwy_init.dmp log=cwy_init_exp.log 注释:   cwy_init/init_123..._达梦数据库导入导出

js引入kindeditor富文本编辑器的使用_kindeditor.js-程序员宅基地

文章浏览阅读1.9k次。1. 在官网上下载KindEditor文件,可以删掉不需要要到的jsp,asp,asp.net和php文件夹。接着把文件夹放到项目文件目录下。2. 修改html文件,在页面引入js文件:<script type="text/javascript" src="./kindeditor/kindeditor-all.js"></script><script type="text/javascript" src="./kindeditor/lang/zh-CN.js"_kindeditor.js

STM32学习过程记录11——基于STM32G431CBU6硬件SPI+DMA的高效WS2812B控制方法-程序员宅基地

文章浏览阅读2.3k次,点赞6次,收藏14次。SPI的详情简介不必赘述。假设我们通过SPI发送0xAA,我们的数据线就会变为10101010,通过修改不同的内容,即可修改SPI中0和1的持续时间。比如0xF0即为前半周期为高电平,后半周期为低电平的状态。在SPI的通信模式中,CPHA配置会影响该实验,下图展示了不同采样位置的SPI时序图[1]。CPOL = 0,CPHA = 1:CLK空闲状态 = 低电平,数据在下降沿采样,并在上升沿移出CPOL = 0,CPHA = 0:CLK空闲状态 = 低电平,数据在上升沿采样,并在下降沿移出。_stm32g431cbu6

计算机网络-数据链路层_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输-程序员宅基地

文章浏览阅读1.2k次,点赞2次,收藏8次。数据链路层习题自测问题1.数据链路(即逻辑链路)与链路(即物理链路)有何区别?“电路接通了”与”数据链路接通了”的区别何在?2.数据链路层中的链路控制包括哪些功能?试讨论数据链路层做成可靠的链路层有哪些优点和缺点。3.网络适配器的作用是什么?网络适配器工作在哪一层?4.数据链路层的三个基本问题(帧定界、透明传输和差错检测)为什么都必须加以解决?5.如果在数据链路层不进行帧定界,会发生什么问题?6.PPP协议的主要特点是什么?为什么PPP不使用帧的编号?PPP适用于什么情况?为什么PPP协议不_接收方收到链路层数据后,使用crc检验后,余数为0,说明链路层的传输时可靠传输

软件测试工程师移民加拿大_无证移民,未受过软件工程师的教育(第1部分)-程序员宅基地

文章浏览阅读587次。软件测试工程师移民加拿大 无证移民,未受过软件工程师的教育(第1部分) (Undocumented Immigrant With No Education to Software Engineer(Part 1))Before I start, I want you to please bear with me on the way I write, I have very little gen...

随便推点

Thinkpad X250 secure boot failed 启动失败问题解决_安装完系统提示secureboot failure-程序员宅基地

文章浏览阅读304次。Thinkpad X250笔记本电脑,装的是FreeBSD,进入BIOS修改虚拟化配置(其后可能是误设置了安全开机),保存退出后系统无法启动,显示:secure boot failed ,把自己惊出一身冷汗,因为这台笔记本刚好还没开始做备份.....根据错误提示,到bios里面去找相关配置,在Security里面找到了Secure Boot选项,发现果然被设置为Enabled,将其修改为Disabled ,再开机,终于正常启动了。_安装完系统提示secureboot failure

C++如何做字符串分割(5种方法)_c++ 字符串分割-程序员宅基地

文章浏览阅读10w+次,点赞93次,收藏352次。1、用strtok函数进行字符串分割原型: char *strtok(char *str, const char *delim);功能:分解字符串为一组字符串。参数说明:str为要分解的字符串,delim为分隔符字符串。返回值:从str开头开始的一个个被分割的串。当没有被分割的串时则返回NULL。其它:strtok函数线程不安全,可以使用strtok_r替代。示例://借助strtok实现split#include <string.h>#include <stdio.h&_c++ 字符串分割

2013第四届蓝桥杯 C/C++本科A组 真题答案解析_2013年第四届c a组蓝桥杯省赛真题解答-程序员宅基地

文章浏览阅读2.3k次。1 .高斯日记 大数学家高斯有个好习惯:无论如何都要记日记。他的日记有个与众不同的地方,他从不注明年月日,而是用一个整数代替,比如:4210后来人们知道,那个整数就是日期,它表示那一天是高斯出生后的第几天。这或许也是个好习惯,它时时刻刻提醒着主人:日子又过去一天,还有多少时光可以用于浪费呢?高斯出生于:1777年4月30日。在高斯发现的一个重要定理的日记_2013年第四届c a组蓝桥杯省赛真题解答

基于供需算法优化的核极限学习机(KELM)分类算法-程序员宅基地

文章浏览阅读851次,点赞17次,收藏22次。摘要:本文利用供需算法对核极限学习机(KELM)进行优化,并用于分类。

metasploitable2渗透测试_metasploitable2怎么进入-程序员宅基地

文章浏览阅读1.1k次。一、系统弱密码登录1、在kali上执行命令行telnet 192.168.26.1292、Login和password都输入msfadmin3、登录成功,进入系统4、测试如下:二、MySQL弱密码登录:1、在kali上执行mysql –h 192.168.26.129 –u root2、登录成功,进入MySQL系统3、测试效果:三、PostgreSQL弱密码登录1、在Kali上执行psql -h 192.168.26.129 –U post..._metasploitable2怎么进入

Python学习之路:从入门到精通的指南_python人工智能开发从入门到精通pdf-程序员宅基地

文章浏览阅读257次。本文将为初学者提供Python学习的详细指南,从Python的历史、基础语法和数据类型到面向对象编程、模块和库的使用。通过本文,您将能够掌握Python编程的核心概念,为今后的编程学习和实践打下坚实基础。_python人工智能开发从入门到精通pdf

推荐文章

热门文章

相关标签