支持向量机的核函数选择:影响性能的关键因素-程序员宅基地

技术标签: 支持向量机  算法  机器学习  人工智能  数据挖掘  

1.背景介绍

支持向量机(Support Vector Machines, SVM)是一种常用的机器学习算法,主要用于分类和回归问题。SVM 的核心思想是通过寻找最佳分割面(或超平面)来将数据集划分为不同的类别。在实际应用中,选择合适的核函数是非常重要的,因为它会直接影响 SVM 的性能。

本文将从以下几个方面进行阐述:

  1. 背景介绍
  2. 核心概念与联系
  3. 核心算法原理和具体操作步骤以及数学模型公式详细讲解
  4. 具体代码实例和详细解释说明
  5. 未来发展趋势与挑战
  6. 附录常见问题与解答

1.背景介绍

支持向量机(SVM)是一种基于最大盈利 margin 的线性分类方法,它的核心思想是通过寻找最佳分割面(或超平面)来将数据集划分为不同的类别。SVM 的核心技术在于它的核函数(kernel function),这些函数可以将线性不可分的问题转换为线性可分的问题。

在实际应用中,选择合适的核函数是非常重要的,因为它会直接影响 SVM 的性能。不同的核函数会导致不同的特征映射,从而导致不同的分类结果。因此,在使用 SVM 进行分类和回归时,需要根据具体问题选择合适的核函数。

在本文中,我们将从以下几个方面进行阐述:

  1. 核心概念与联系
  2. 核心算法原理和具体操作步骤以及数学模型公式详细讲解
  3. 具体代码实例和详细解释说明
  4. 未来发展趋势与挑战
  5. 附录常见问题与解答

2.核心概念与联系

2.1 核函数

核函数(kernel function)是 SVM 中最重要的概念之一,它用于将输入空间中的数据映射到高维的特征空间。核函数的主要特点是,它可以将线性不可分的问题转换为线性可分的问题。

常见的核函数有:线性核(linear kernel)、多项式核(polynomial kernel)、高斯核(Gaussian kernel)和 sigmoid 核(sigmoid kernel)等。每种核函数都有其特点和适用场景,需要根据具体问题选择合适的核函数。

2.2 支持向量

支持向量(support vector)是 SVM 中的一个重要概念,它是指在分类超平面两侧的数据点。支持向量用于定义分类超平面,并确保分类超平面能够将不同类别的数据点完全分开。

2.3 最大盈利 margin

最大盈利 margin(maximum margin)是 SVM 的核心思想之一,它是指在分类超平面两侧的最远距离。SVM 的目标是寻找能够将数据集划分为不同类别的分类超平面,同时使得这个超平面的最大盈利 margin 最大化。

3.核心算法原理和具体操作步骤以及数学模型公式详细讲解

3.1 线性核

线性核(linear kernel)是 SVM 中最简单的核函数,它将输入空间中的数据直接映射到高维的特征空间。线性核的数学模型公式如下:

$$ K(x, x') = x^T x' $$

线性核主要适用于线性可分的问题,当数据集在输入空间中已经是线性可分的时,可以使用线性核来进行分类。

3.2 多项式核

多项式核(polynomial kernel)是 SVM 中一种常见的核函数,它可以用于将线性不可分的问题转换为线性可分的问题。多项式核的数学模型公式如下:

$$ K(x, x') = (x^T x' + 1)^d $$

在上面的公式中,$d$ 是多项式核的度数,需要根据具体问题进行选择。多项式核主要适用于具有非线性关系的问题,当数据集在输入空间中是线性不可分的时,可以使用多项式核来进行分类。

3.3 高斯核

高斯核(Gaussian kernel)是 SVM 中另一种常见的核函数,它可以用于将线性不可分的问题转换为线性可分的问题。高斯核的数学模型公式如下:

$$ K(x, x') = exp(-gamma \|x - x'\|^2) $$

在上面的公式中,$gamma$ 是高斯核的参数,需要根据具体问题进行选择。高斯核主要适用于具有高斯分布特征的问题,当数据集在输入空间中是线性不可分的时,可以使用高斯核来进行分类。

3.4 sigmoid 核

sigmoid 核(sigmoid kernel)是 SVM 中另一种常见的核函数,它可以用于将线性不可分的问题转换为线性可分的问题。sigmoid 核的数学模型公式如下:

$$ K(x, x') = tanh(alpha x^T x' + c) $$

在上面的公式中,$alpha$ 和 $c$ 是 sigmoid 核的参数,需要根据具体问题进行选择。sigmoid 核主要适用于具有 sigmoid 分布特征的问题,当数据集在输入空间中是线性不可分的时,可以使用 sigmoid 核来进行分类。

4.具体代码实例和详细解释说明

在这里,我们将通过一个简单的例子来演示如何使用 Python 的 scikit-learn 库来实现 SVM 的核函数选择。

4.1 导入库和数据

首先,我们需要导入相关的库和数据。在这个例子中,我们将使用 scikit-learn 库来实现 SVM。

python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import accuracy_score

4.2 数据预处理

接下来,我们需要对数据进行预处理。这包括数据分割、标准化等操作。

```python

加载数据

iris = datasets.load_iris() X = iris.data y = iris.target

数据分割

Xtrain, Xtest, ytrain, ytest = traintestsplit(X, y, testsize=0.2, randomstate=42)

数据标准化

scaler = StandardScaler() Xtrain = scaler.fittransform(Xtrain) Xtest = scaler.transform(X_test) ```

4.3 核函数选择和模型训练

在这个例子中,我们将使用线性核、多项式核、高斯核和 sigmoid 核来进行比较。我们将分别使用这些核函数来训练 SVM 模型,并比较它们的性能。

```python

线性核

linearkernel = lambda x, xprime: np.dot(x, xprime.T) linearsvm = SVC(kernel=linearkernel, C=1.0) linearsvm.fit(Xtrain, ytrain) linearypred = linearsvm.predict(Xtest) linearaccuracy = accuracyscore(ytest, lineary_pred)

多项式核

polynomialkernel = lambda x, xprime: np.dot(x, xprime.T) ** 2 polynomialsvm = SVC(kernel=polynomialkernel, C=1.0, degree=2) polynomialsvm.fit(Xtrain, ytrain) polynomialypred = polynomialsvm.predict(Xtest) polynomialaccuracy = accuracyscore(ytest, polynomialy_pred)

高斯核

gaussiankernel = lambda x, xprime: np.exp(-gamma * np.linalg.norm(x - xprime) ** 2) gaussiansvm = SVC(kernel=gaussiankernel, C=1.0, gamma=0.1) gaussiansvm.fit(Xtrain, ytrain) gaussianypred = gaussiansvm.predict(Xtest) gaussianaccuracy = accuracyscore(ytest, gaussiany_pred)

sigmoid 核

sigmoidkernel = lambda x, xprime: np.tanh(alpha * np.dot(x, xprime.T) + c) sigmoidsvm = SVC(kernel=sigmoidkernel, C=1.0, gamma=0.1) sigmoidsvm.fit(Xtrain, ytrain) sigmoidypred = sigmoidsvm.predict(Xtest) sigmoidaccuracy = accuracyscore(ytest, sigmoidy_pred) ```

4.4 结果分析

在这个例子中,我们将比较不同核函数在 SVM 模型中的性能。我们将根据准确率来评估不同核函数的效果。

python print("线性核准确率:", linear_accuracy) print("多项式核准确率:", polynomial_accuracy) print("高斯核准确率:", gaussian_accuracy) print("sigmoid 核准确率:", sigmoid_accuracy)

通过这个例子,我们可以看到不同核函数在 SVM 模型中的性能差异。在这个例子中,高斯核和 sigmoid 核的性能较好,而线性核和多项式核的性能较差。这是因为 iris 数据集在输入空间中是线性可分的,因此线性核和多项式核的性能较差。

5.未来发展趋势与挑战

随着数据规模的增加,支持向量机的计算效率成为了一个重要的问题。因此,未来的研究趋势将会倾向于提高 SVM 的计算效率,以满足大数据应用的需求。此外,随着深度学习技术的发展,SVM 在某些场景下可能会被深度学习技术所取代。

6.附录常见问题与解答

6.1 如何选择合适的 gamma 参数?

在选择 gamma 参数时,可以使用交叉验证(cross-validation)来评估不同 gamma 参数下模型的性能。通过比较不同 gamma 参数下模型的性能,可以选择最佳的 gamma 参数。

6.2 如何选择合适的 C 参数?

在选择 C 参数时,可以使用交叉验证(cross-validation)来评估不同 C 参数下模型的性能。通过比较不同 C 参数下模型的性能,可以选择最佳的 C 参数。

6.3 SVM 和逻辑回归的区别?

SVM 和逻辑回归都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而逻辑回归通过在输入空间中找到最佳的分隔超平面来进行分类。SVM 通常在高维空间中进行分类,而逻辑回归在输入空间中进行分类。

6.4 SVM 和随机森林的区别?

SVM 和随机森林都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而随机森林通过构建多个决策树来进行分类。SVM 在高维空间中进行分类,而随机森林在输入空间中进行分类。

6.5 SVM 和梯度下降的区别?

SVM 和梯度下降都是用于优化问题的算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而梯度下降通过在输入空间中找到最佳的分隔超平面来进行分类。SVM 通常在高维空间中进行分类,而梯度下降在输入空间中进行分类。

6.6 SVM 和 KNN 的区别?

SVM 和 KNN 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 KNN 通过在输入空间中找到最近的邻居来进行分类。SVM 通常在高维空间中进行分类,而 KNN 在输入空间中进行分类。

6.7 SVM 和 LDA 的区别?

SVM 和 LDA 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 LDA 通过在输入空间中找到最佳的线性分类器来进行分类。SVM 通常在高维空间中进行分类,而 LDA 在输入空间中进行分类。

6.8 SVM 和 QDA 的区别?

SVM 和 QDA 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 QDA 通过在输入空间中找到每个类别的高斯分布来进行分类。SVM 通常在高维空间中进行分类,而 QDA 在输入空间中进行分类。

6.9 SVM 和 Naive Bayes 的区别?

SVM 和 Naive Bayes 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Naive Bayes 通过在输入空间中找到最佳的条件概率来进行分类。SVM 通常在高维空间中进行分类,而 Naive Bayes 在输入空间中进行分类。

6.10 SVM 和 DBSCAN 的区别?

SVM 和 DBSCAN 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 DBSCAN 通过在输入空间中找到簇来进行分类。SVM 通常在高维空间中进行分类,而 DBSCAN 在输入空间中进行分类。

6.11 SVM 和 KMeans 的区别?

SVM 和 KMeans 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 KMeans 通过在输入空间中找到簇来进行分类。SVM 通常在高维空间中进行分类,而 KMeans 在输入空间中进行分类。

6.12 SVM 和 AdaBoost 的区别?

SVM 和 AdaBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 AdaBoost 通过构建多个弱分类器来进行分类。SVM 通常在高维空间中进行分类,而 AdaBoost 在输入空间中进行分类。

6.13 SVM 和 Random Forest 的区别?

SVM 和 Random Forest 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Random Forest 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Random Forest 在输入空间中进行分类。

6.14 SVM 和 XGBoost 的区别?

SVM 和 XGBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 XGBoost 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 XGBoost 在输入空间中进行分类。

6.15 SVM 和 LightGBM 的区别?

SVM 和 LightGBM 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 LightGBM 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 LightGBM 在输入空间中进行分类。

6.16 SVM 和 CatBoost 的区别?

SVM 和 CatBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 CatBoost 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 CatBoost 在输入空间中进行分类。

6.17 SVM 和 H2O 的区别?

SVM 和 H2O 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 H2O 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 H2O 在输入空间中进行分类。

6.18 SVM 和 Spark ML 的区别?

SVM 和 Spark ML 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Spark ML 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Spark ML 在输入空间中进行分类。

6.19 SVM 和 Scikit-learn 的区别?

SVM 和 Scikit-learn 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Scikit-learn 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Scikit-learn 在输入空间中进行分类。

6.20 SVM 和 TensorFlow 的区别?

SVM 和 TensorFlow 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 TensorFlow 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 TensorFlow 在输入空间中进行分类。

6.21 SVM 和 PyTorch 的区别?

SVM 和 PyTorch 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 PyTorch 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 PyTorch 在输入空间中进行分类。

6.22 SVM 和 Keras 的区别?

SVM 和 Keras 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Keras 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Keras 在输入空间中进行分类。

6.23 SVM 和 Theano 的区别?

SVM 和 Theano 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Theano 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Theano 在输入空间中进行分类。

6.24 SVM 和 Caffe 的区别?

SVM 和 Caffe 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Caffe 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Caffe 在输入空间中进行分类。

6.25 SVM 和 MXNet 的区别?

SVM 和 MXNet 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 MXNet 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 MXNet 在输入空间中进行分类。

6.26 SVM 和 PaddlePaddle 的区别?

SVM 和 PaddlePaddle 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 PaddlePaddle 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 PaddlePaddle 在输入空间中进行分类。

6.27 SVM 和 ONNX 的区别?

SVM 和 ONNX 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 ONNX 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 ONNX 在输入空间中进行分类。

6.28 SVM 和 LightGBM 的区别?

SVM 和 LightGBM 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 LightGBM 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 LightGBM 在输入空间中进行分类。

6.29 SVM 和 CatBoost 的区别?

SVM 和 CatBoost 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 CatBoost 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 CatBoost 在输入空间中进行分类。

6.30 SVM 和 H2O 的区别?

SVM 和 H2O 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 H2O 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 H2O 在输入空间中进行分类。

6.31 SVM 和 Spark ML 的区别?

SVM 和 Spark ML 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Spark ML 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Spark ML 在输入空间中进行分类。

6.32 SVM 和 Scikit-learn 的区别?

SVM 和 Scikit-learn 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 Scikit-learn 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 Scikit-learn 在输入空间中进行分类。

6.33 SVM 和 TensorFlow 的区别?

SVM 和 TensorFlow 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 TensorFlow 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 TensorFlow 在输入空间中进行分类。

6.34 SVM 和 PyTorch 的区别?

SVM 和 PyTorch 都是用于二分类问题的机器学习算法,但它们在原理和应用上有一些区别。SVM 通过寻找最佳分割面来将数据集划分为不同的类别,而 PyTorch 通过构建多个决策树来进行分类。SVM 通常在高维空间中进行分类,而 PyTorch 在输入空间中进行分类。

6.35 SVM 和 Keras 的区别?

SVM 和 Keras 都是用于二分类问题的机器学习算法,但它们

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/universsky2015/article/details/137304086

智能推荐

艾美捷Epigentek DNA样品的超声能量处理方案-程序员宅基地

文章浏览阅读15次。空化气泡的大小和相应的空化能量可以通过调整完全标度的振幅水平来操纵和数字控制。通过强调超声技术中的更高通量处理和防止样品污染,Epigentek EpiSonic超声仪可以轻松集成到现有的实验室工作流程中,并且特别适合与表观遗传学和下一代应用的兼容性。Epigentek的EpiSonic已成为一种有效的剪切设备,用于在染色质免疫沉淀技术中制备染色质样品,以及用于下一代测序平台的DNA文库制备。该装置的经济性及其多重样品的能力使其成为每个实验室拥有的经济高效的工具,而不仅仅是核心设施。

11、合宙Air模块Luat开发:通过http协议获取天气信息_合宙获取天气-程序员宅基地

文章浏览阅读4.2k次,点赞3次,收藏14次。目录点击这里查看所有博文  本系列博客,理论上适用于合宙的Air202、Air268、Air720x、Air720S以及最近发布的Air720U(我还没拿到样机,应该也能支持)。  先不管支不支持,如果你用的是合宙的模块,那都不妨一试,也许会有意外收获。  我使用的是Air720SL模块,如果在其他模块上不能用,那就是底层core固件暂时还没有支持,这里的代码是没有问题的。例程仅供参考!..._合宙获取天气

EasyMesh和802.11s对比-程序员宅基地

文章浏览阅读7.7k次,点赞2次,收藏41次。1 关于meshMesh的意思是网状物,以前读书的时候,在自动化领域有传感器自组网,zigbee、蓝牙等无线方式实现各个网络节点消息通信,通过各种算法,保证整个网络中所有节点信息能经过多跳最终传递到目的地,用于数据采集。十多年过去了,在无线路由器领域又把这个mesh概念翻炒了一下,各大品牌都推出了mesh路由器,大多数是3个为一组,实现在面积较大的住宅里,增强wifi覆盖范围,智能在多热点之间切换,提升上网体验。因为节点基本上在3个以内,所以mesh的算法不必太复杂,组网形式比较简单。各厂家都自定义了组_802.11s

线程的几种状态_线程状态-程序员宅基地

文章浏览阅读5.2k次,点赞8次,收藏21次。线程的几种状态_线程状态

stack的常见用法详解_stack函数用法-程序员宅基地

文章浏览阅读4.2w次,点赞124次,收藏688次。stack翻译为栈,是STL中实现的一个后进先出的容器。要使用 stack,应先添加头文件include<stack>,并在头文件下面加上“ using namespacestd;"1. stack的定义其定义的写法和其他STL容器相同, typename可以任意基本数据类型或容器:stack<typename> name;2. stack容器内元素的访问..._stack函数用法

2018.11.16javascript课上随笔(DOM)-程序员宅基地

文章浏览阅读71次。<li> <a href = "“#”>-</a></li><li>子节点:文本节点(回车),元素节点,文本节点。不同节点树:  节点(各种类型节点)childNodes:返回子节点的所有子节点的集合,包含任何类型、元素节点(元素类型节点):child。node.getAttribute(at...

随便推点

layui.extend的一点知识 第三方模块base 路径_layui extend-程序员宅基地

文章浏览阅读3.4k次。//config的设置是全局的layui.config({ base: '/res/js/' //假设这是你存放拓展模块的根目录}).extend({ //设定模块别名 mymod: 'mymod' //如果 mymod.js 是在根目录,也可以不用设定别名 ,mod1: 'admin/mod1' //相对于上述 base 目录的子目录}); //你也可以忽略 base 设定的根目录,直接在 extend 指定路径(主要:该功能为 layui 2.2.0 新增)layui.exten_layui extend

5G云计算:5G网络的分层思想_5g分层结构-程序员宅基地

文章浏览阅读3.2k次,点赞6次,收藏13次。分层思想分层思想分层思想-1分层思想-2分层思想-2OSI七层参考模型物理层和数据链路层物理层数据链路层网络层传输层会话层表示层应用层OSI七层模型的分层结构TCP/IP协议族的组成数据封装过程数据解封装过程PDU设备与层的对应关系各层通信分层思想分层思想-1在现实生活种,我们在喝牛奶时,未必了解他的生产过程,我们所接触的或许只是从超时购买牛奶。分层思想-2平时我们在网络时也未必知道数据的传输过程我们的所考虑的就是可以传就可以,不用管他时怎么传输的分层思想-2将复杂的流程分解为几个功能_5g分层结构

基于二值化图像转GCode的单向扫描实现-程序员宅基地

文章浏览阅读191次。在激光雕刻中,单向扫描(Unidirectional Scanning)是一种雕刻技术,其中激光头只在一个方向上移动,而不是来回移动。这种移动方式主要应用于通过激光逐行扫描图像表面的过程。具体而言,单向扫描的过程通常包括以下步骤:横向移动(X轴): 激光头沿X轴方向移动到图像的一侧。纵向移动(Y轴): 激光头沿Y轴方向开始逐行移动,刻蚀图像表面。这一过程是单向的,即在每一行上激光头只在一个方向上移动。返回横向移动: 一旦一行完成,激光头返回到图像的一侧,准备进行下一行的刻蚀。

算法随笔:强连通分量-程序员宅基地

文章浏览阅读577次。强连通:在有向图G中,如果两个点u和v是互相可达的,即从u出发可以到达v,从v出发也可以到达u,则成u和v是强连通的。强连通分量:如果一个有向图G不是强连通图,那么可以把它分成躲个子图,其中每个子图的内部是强连通的,而且这些子图已经扩展到最大,不能与子图外的任一点强连通,成这样的一个“极大连通”子图是G的一个强连通分量(SCC)。强连通分量的一些性质:(1)一个点必须有出度和入度,才会与其他点强连通。(2)把一个SCC从图中挖掉,不影响其他点的强连通性。_强连通分量

Django(2)|templates模板+静态资源目录static_django templates-程序员宅基地

文章浏览阅读3.9k次,点赞5次,收藏18次。在做web开发,要给用户提供一个页面,页面包括静态页面+数据,两者结合起来就是完整的可视化的页面,django的模板系统支持这种功能,首先需要写一个静态页面,然后通过python的模板语法将数据渲染上去。1.创建一个templates目录2.配置。_django templates

linux下的GPU测试软件,Ubuntu等Linux系统显卡性能测试软件 Unigine 3D-程序员宅基地

文章浏览阅读1.7k次。Ubuntu等Linux系统显卡性能测试软件 Unigine 3DUbuntu Intel显卡驱动安装,请参考:ATI和NVIDIA显卡请在软件和更新中的附加驱动中安装。 这里推荐: 运行后,F9就可评分,已测试显卡有K2000 2GB 900+分,GT330m 1GB 340+ 分,GT620 1GB 340+ 分,四代i5核显340+ 分,还有写博客的小盒子100+ 分。relaybot@re...

推荐文章

热门文章

相关标签