网络编程 socket详解 TCP socket和UDP socket-程序员宅基地

技术标签: 网络  服务器  socket  网络协议  tcp/ip  

概述

        我们在网络编程时,通常是让我们本地的应用程序和远程的应用程序进行通信,也就是分布式的进程之间的通信,比如我写的程序A和小明的程序B进行通信,我的程序运行时在本机就是一个进程,是有pid号的,小明的也是。那这两个程序是怎么通信的呢?

        这就要理解网络分层的概念了,网络层实现的是主机到主机之间的通信,网络层的实现是ip协议,通过各自的ip地址就能实现远程数据传输,而网络层只是保证了主机A的数据能够到达主机B,并不能够识别和发送到对应的进程,而传输层实现的是进程到进程的通信,对网络层的功能进行了加强,能够把数据交付给对应的进程。

        有了传输层的功能,我们用户才能进一步的去实现自己的应用层协议,实现应用。当我们需要远程通信时只需要通过下层的传输层传输数据即可

        但是想象一下,每次我在应用层发送数据时至少都是需要把 要发送的信息、本机ip、本地端口、目的ip和目的端口这五个数据通过层间接口交给传输层(对于TCP协议来说的,UDP无连接不需要应答所以不需要本机ip和端口),如下图

         但是每一次应用层向传输层发送数据时都需要发送这些数据是不是很多余?TCP一旦双方建立起连接了,那么除了数据部分,其他的都是相同的,没有必要每次发送数据都发送一遍,为了减少层间接口的传输量,就出现了socket,操作系统底层维护一个列表,用于存放多个socket,即多个会话关系。

        socket套接字是传输层提供给应用层的一个API,底层实现就是一个整数,是传输层和应用层的一个约定,该整数就像是打开一个文件并得到文件句柄一样,对这个句柄进行的操作就是对该文件进行操作,方便管理。

有了socket之后应用层数据的传输就变为了这样

传输层概述

        先来说说网络层的ip,ip协议在网络上发送数据包是不可靠的,有可能造成丢失,乱序等问题,如发送数据包到对应的路由器,路由器有接收缓冲区,如果发现同一时刻来的数据包太多了,缓冲区放不下,它是可以把装不下的数据包扔掉的。这就是不可靠的传输。

传输层提供了TCP和UDP两种服务:

  • TCP:对ip协议进行了增强,通过一些方式来达到可靠的数据传输
  • UDP:不可靠的数据传输,它只对ip增加了进程到进程之间的通信,其他的就没了,原原本本

TCP套接字编程

        TCP socket反应的是应用进程A和应用进程B会话关系的一个代表,A对对应的socket发送数据,就是A对B发送数据;A对对应的socket接收数据就是对B接收数据。

大致过程

1.服务器进程必须运行,创建一个欢迎socket,该socket和本地的端口进行捆绑,在欢迎socket上阻塞式的等待接收客户端的连接

2.客户端创建本地的套接字,隐式捆绑到本地的端口,再指定服务器的ip和端口进行连接。

3.服务器接受来自用户端的请求 ,解除阻塞式等待,返回一个 新的socket(与欢迎socket不 一样),与客户端通信

4.连接API调用有效时,客户端与服务器建立了TCP连接,即可以通信了

代码如下:

@Test
public void server() throws IOException {
    //1.建立欢迎socket,绑定一个监听的端口号
    ServerSocket welcomeSocket = new ServerSocket(8080);
    //2.阻塞的等待客户端的连接请求,连接请求到来时创建一个新的socket,与客户端绑定
    Socket socket = welcomeSocket.accept();
    //6.从该socket接收数据
    InputStream is = socket.getInputStream();
    int len = 0;
    while ((len = is.read()) != -1) {
        System.out.print((char) len);
    }
    socket.close();
}

@Test
public void client() throws IOException {
    //3.建立一个客户端这边的socket
    Socket socket = new Socket();
    //4.阻塞的请求连接到指定ip和端口号的服务器进程
    socket.connect(new InetSocketAddress("localhost", 8080));
    //5.发送数据到该socket
    OutputStream os = socket.getOutputStream();
    byte[] bytes = new byte[1024];
    os.write("hello".getBytes());
    socket.shutdownOutput();
}

详细过程

首先来看java中socket的结构体(类),其他语言都大同小异。

public abstract class SocketImpl implements SocketOptions {    
    /**
     * The IP address of the remote end of this socket.远程主机的ip地址
     */
    protected InetAddress address;
    /**
     * The port number on the remote host to which this socket is connected.远程主机的端口
     */
    protected int port;
    /**
     * The local port number to which this socket is connected.本地端口
     */
    protected int localport;
    /**
     *实际还有一个本机的ip地址,被省略掉了
     */
}

InetAddress类就不介绍了,里面就是封装了ip地址等信息。

ServerSocket和Socket类是一个东西,只时名字不同而已。具体可以看源码。

可以得出来socket其实大致就是这么一个6元组(这里省略了socket的状态),当我们应用进程创建socket时,操作系统给该socket一个唯一的整数标识,且肯定是要保存是哪个进程创建的socket,所以pid也应该对应起来,方便日后能给找到对应的进程。

 我们举例如下图的一个通信过程来具体的说明socket的通信过程:

1.首先服务器进程先建立一个欢迎socket,用于监听连接请求,并且绑定端口号为8080,阻塞监听客户端的连接请求,如下图

 2.这时候客户端也新建一个socket(该socket以后会当做和服务器的通信socket),这个socket不用像服务器那样绑定一个固定的端口号用于监听,但是操作系统会给该socket绑定一个随机的端口,这里假设是4567。如下图,此时客户端的1号socket还是一个无效的状态,因为还没有连接

3.客户端用刚刚建立的socket和远程服务器进行连接connect,指明服务器的地址和对应的端口号,此时socket的状态也就补齐了,随后客户端进入阻塞模式进行TCP的三次握手,请求和服务器建立连接

 4.服务器和客户端TCP连接建立好后,解除阻塞,并且返回一个新的socket(因为不能占用welcome socket),新的socket就是服务器和客户端的一个连接状态,该socket变为一个有效状态,此时服务器继续进入阻塞状态等待此socket的数据。

5. 连接建立好后,客户端也解除阻塞,它的socket1也变为有效状态。然后客户端把需要发送的数据和对应的socket1(输出流里面封装了socket)交给下层传输层,此时的传输层得到了它相应的信息,根据socket就可以从表中查到需要发送的目的ip和端口,继续交给下层直到发送到服务器。

6.服务器的tcp层收到数据包后,查看源ip、目的ip、源端口、目的端口,一一对照自己的socket表,发现2号socket真好对应,且得知2号socket是pid为100的应用进程,所以tcp把数据发送给该进程,服务器的java进程解除阻塞,read客户端发送来的数据。

7.最后如果服务器和客户端某一方没有数据发了,不想建立连接了,就调用close方法,进行TCP的四次挥手,解除连接,使两边对应的socket都变得无效。

UDP套接字编程

        UDP是没有建立连接这一过程的,也不需要维持会话关系,每个报文都是独立传输的。因此UDP只能使用一个整数来标志当前应用进程,不能够固定住对方的ip和端口号,因为UDP通信前不建立连接,可能现在发的这个ip和端口是一台主机,而下次用同样的ip和端口发的就是另一台主机了。所以每次发送的时候都需要指定发送的目的ip和端口。

UDP的socket大致如下

 java中UDPsocket结构如下

public abstract class DatagramSocketImpl implements SocketOptions {

    /**
     * The local port number.
     */
    protected int localPort;
    /**
     * 省略本机ip
     */
}

UDP简单套接字编程如下:

@Test
public void server() throws IOException {
    //1.创建udp socket,并绑定到本机ip和8080端口号
    DatagramSocket socket = new DatagramSocket(8080);
    byte[] buff = new byte[100];
    //存放数据包的容器
    DatagramPacket packet = new DatagramPacket(buff, 0, buff.length);
    //接收数据包
    socket.receive(packet);
    System.out.println(new String(packet.getData(), 0, packet.getLength()));
    socket.close();
}

@Test
public void client() throws IOException {
    DatagramSocket socket = new DatagramSocket();
    byte[] data = "hello".getBytes();
    //指明发送端的ip和端口和数据部分
    DatagramPacket packet = new DatagramPacket(data, data.length, InetAddress.getByName("127.1.1.1"), 8080);
    //使用该socket发送数据包
    socket.send(packet);
}

详细步骤如下:

1.服务器创建一个udp的socket,绑定端口8080用于监听数据包,通过调用receive方法阻塞的监听。

  2.客户端创建一个自己的socket,该socket的端口假设操作系统分配的是4567

 3.客户端发送数据包、目标ip和目标端口给下层的传输层,传输层就能够得到源ip、源端口、目的ip和目的端口,然后一步一步的打包交给下层,发送到服务器主机,服务器主机通过数据包的目的ip和目的端口,对比发现socket对应,然后把数据发送给对应的pid号为100的应用进程。

4.服务器解除阻塞,收取数据。

5.最后关闭连接,删除对应的socket

注意的是UDP是没有welcome socket的

补充

再补充一个小知识点,那就是端口号和进程的联系

进程pid是否可供计算机之间使用呢?

        应用层代表的就是我们的应用进程,既然进程代表着应用层,那为什么进程pid不能作为应用层的标识来进行计算机之间传输呢?而是使用额外的端口号呢?

(1)首先: 单个计算机中的进程使用pid来标志的,但是在互联网环境下使用的计算机操作系统种类很多,而不同的操作系统又使用不同格式的进程标识符,为了使运行不同操作系统的计算机的应用进程能够互相通信,就必须使用统一的方法对TCP/IP体系的进程进行标识;

(2)其次:一个机器上运行的进程不能成为互联网上通信的最后终点,因为进程的创建和撤销都是动态的,通信的一方几乎无法识别对方机器的进程是哪一个;

例如:要和互联网上某个邮件服务器联系,几乎无法得知其服务器邮件进程的进程标识符,因为进程标识符是随机分配的;所以,我们并不一定要知道这个服务器服务是由目的主机那个进程实现的;

所以,不能使用进程标识符来做计算机之间的进程通信标识;

如何使用端口号进行通信?
   
    两个计算机中进程要互相通信,除了必须指定对方的IP地址,还需要知道对方的端口号;

例如:我们寄信的过程说明,当我们要给某人写信时,除了通讯地址还要有收件人的名字,这里的通讯地址就是IP地址,但是收件人的名字却不是进程标识符,因为有可能这个人用的是法文、德文、英文名字,快递员无法识别,因此采用 “菜鸟驿站" 的模式,为每个地址配备多个快递箱(端口号),快递员只是将包裹放置具体的快递箱(端口号),收件人通过监听某个快递箱是否有快递(TCP或者UDP),来进行数据接收,最终拿到需要的包裹(数据);

端口号如何分配?

        (1)服务器使用的端口号:

        一类为熟知端口号或系统端口号(0~1023),将一些重要的应用程序进行登记,所以将一些端口号固定的分配给它们,以便于让所以的用户的了解,与之建立联系; 

        另一类为登记端口号(1024~49151),为那些不知名的应用程序使用;

        (2)客户机使用的端口号:

        也称为短暂端口号,由于这类端口仅仅在客户进程进行时才动态选择,留给客户进程短暂使用,当通信结束后,刚才使用过的客户端口号不复存在,可以继续供其他客户进程使用;
 

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_45902285/article/details/122814167

智能推荐

艾美捷Epigentek DNA样品的超声能量处理方案-程序员宅基地

文章浏览阅读15次。空化气泡的大小和相应的空化能量可以通过调整完全标度的振幅水平来操纵和数字控制。通过强调超声技术中的更高通量处理和防止样品污染,Epigentek EpiSonic超声仪可以轻松集成到现有的实验室工作流程中,并且特别适合与表观遗传学和下一代应用的兼容性。Epigentek的EpiSonic已成为一种有效的剪切设备,用于在染色质免疫沉淀技术中制备染色质样品,以及用于下一代测序平台的DNA文库制备。该装置的经济性及其多重样品的能力使其成为每个实验室拥有的经济高效的工具,而不仅仅是核心设施。

11、合宙Air模块Luat开发:通过http协议获取天气信息_合宙获取天气-程序员宅基地

文章浏览阅读4.2k次,点赞3次,收藏14次。目录点击这里查看所有博文  本系列博客,理论上适用于合宙的Air202、Air268、Air720x、Air720S以及最近发布的Air720U(我还没拿到样机,应该也能支持)。  先不管支不支持,如果你用的是合宙的模块,那都不妨一试,也许会有意外收获。  我使用的是Air720SL模块,如果在其他模块上不能用,那就是底层core固件暂时还没有支持,这里的代码是没有问题的。例程仅供参考!..._合宙获取天气

EasyMesh和802.11s对比-程序员宅基地

文章浏览阅读7.7k次,点赞2次,收藏41次。1 关于meshMesh的意思是网状物,以前读书的时候,在自动化领域有传感器自组网,zigbee、蓝牙等无线方式实现各个网络节点消息通信,通过各种算法,保证整个网络中所有节点信息能经过多跳最终传递到目的地,用于数据采集。十多年过去了,在无线路由器领域又把这个mesh概念翻炒了一下,各大品牌都推出了mesh路由器,大多数是3个为一组,实现在面积较大的住宅里,增强wifi覆盖范围,智能在多热点之间切换,提升上网体验。因为节点基本上在3个以内,所以mesh的算法不必太复杂,组网形式比较简单。各厂家都自定义了组_802.11s

线程的几种状态_线程状态-程序员宅基地

文章浏览阅读5.2k次,点赞8次,收藏21次。线程的几种状态_线程状态

stack的常见用法详解_stack函数用法-程序员宅基地

文章浏览阅读4.2w次,点赞124次,收藏688次。stack翻译为栈,是STL中实现的一个后进先出的容器。要使用 stack,应先添加头文件include<stack>,并在头文件下面加上“ using namespacestd;"1. stack的定义其定义的写法和其他STL容器相同, typename可以任意基本数据类型或容器:stack<typename> name;2. stack容器内元素的访问..._stack函数用法

2018.11.16javascript课上随笔(DOM)-程序员宅基地

文章浏览阅读71次。<li> <a href = "“#”>-</a></li><li>子节点:文本节点(回车),元素节点,文本节点。不同节点树:  节点(各种类型节点)childNodes:返回子节点的所有子节点的集合,包含任何类型、元素节点(元素类型节点):child。node.getAttribute(at...

随便推点

layui.extend的一点知识 第三方模块base 路径_layui extend-程序员宅基地

文章浏览阅读3.4k次。//config的设置是全局的layui.config({ base: '/res/js/' //假设这是你存放拓展模块的根目录}).extend({ //设定模块别名 mymod: 'mymod' //如果 mymod.js 是在根目录,也可以不用设定别名 ,mod1: 'admin/mod1' //相对于上述 base 目录的子目录}); //你也可以忽略 base 设定的根目录,直接在 extend 指定路径(主要:该功能为 layui 2.2.0 新增)layui.exten_layui extend

5G云计算:5G网络的分层思想_5g分层结构-程序员宅基地

文章浏览阅读3.2k次,点赞6次,收藏13次。分层思想分层思想分层思想-1分层思想-2分层思想-2OSI七层参考模型物理层和数据链路层物理层数据链路层网络层传输层会话层表示层应用层OSI七层模型的分层结构TCP/IP协议族的组成数据封装过程数据解封装过程PDU设备与层的对应关系各层通信分层思想分层思想-1在现实生活种,我们在喝牛奶时,未必了解他的生产过程,我们所接触的或许只是从超时购买牛奶。分层思想-2平时我们在网络时也未必知道数据的传输过程我们的所考虑的就是可以传就可以,不用管他时怎么传输的分层思想-2将复杂的流程分解为几个功能_5g分层结构

基于二值化图像转GCode的单向扫描实现-程序员宅基地

文章浏览阅读191次。在激光雕刻中,单向扫描(Unidirectional Scanning)是一种雕刻技术,其中激光头只在一个方向上移动,而不是来回移动。这种移动方式主要应用于通过激光逐行扫描图像表面的过程。具体而言,单向扫描的过程通常包括以下步骤:横向移动(X轴): 激光头沿X轴方向移动到图像的一侧。纵向移动(Y轴): 激光头沿Y轴方向开始逐行移动,刻蚀图像表面。这一过程是单向的,即在每一行上激光头只在一个方向上移动。返回横向移动: 一旦一行完成,激光头返回到图像的一侧,准备进行下一行的刻蚀。

算法随笔:强连通分量-程序员宅基地

文章浏览阅读577次。强连通:在有向图G中,如果两个点u和v是互相可达的,即从u出发可以到达v,从v出发也可以到达u,则成u和v是强连通的。强连通分量:如果一个有向图G不是强连通图,那么可以把它分成躲个子图,其中每个子图的内部是强连通的,而且这些子图已经扩展到最大,不能与子图外的任一点强连通,成这样的一个“极大连通”子图是G的一个强连通分量(SCC)。强连通分量的一些性质:(1)一个点必须有出度和入度,才会与其他点强连通。(2)把一个SCC从图中挖掉,不影响其他点的强连通性。_强连通分量

Django(2)|templates模板+静态资源目录static_django templates-程序员宅基地

文章浏览阅读3.9k次,点赞5次,收藏18次。在做web开发,要给用户提供一个页面,页面包括静态页面+数据,两者结合起来就是完整的可视化的页面,django的模板系统支持这种功能,首先需要写一个静态页面,然后通过python的模板语法将数据渲染上去。1.创建一个templates目录2.配置。_django templates

linux下的GPU测试软件,Ubuntu等Linux系统显卡性能测试软件 Unigine 3D-程序员宅基地

文章浏览阅读1.7k次。Ubuntu等Linux系统显卡性能测试软件 Unigine 3DUbuntu Intel显卡驱动安装,请参考:ATI和NVIDIA显卡请在软件和更新中的附加驱动中安装。 这里推荐: 运行后,F9就可评分,已测试显卡有K2000 2GB 900+分,GT330m 1GB 340+ 分,GT620 1GB 340+ 分,四代i5核显340+ 分,还有写博客的小盒子100+ 分。relaybot@re...

推荐文章

热门文章

相关标签